Your Genomes at Work in Alzheimer's Disease and Related Disorders

Mike Greicius, MD
Iqbal Farrukh and Asad Jamal Professor
Department of Neurology and Neurological Sciences
Stanford University

The Central Dogma

Types of Genetic Studies: Short-Read Whole-Genome Sequencing

Structural Variants

- Single nucleotide variant: Single base change
- Structural variant: Insertion or deletion of more than 50 bases
- Each of us has ~15,000 of these across genome
- Very hard to identify with short-read sequencing (particularly the larger ones)
- More likely than SNVs to disrupt protein function

Types of Genetic Studies: Long-Read Whole-Genome Sequencing

TMEM106B Variant Reduces Risk of Frontotemporal Dementia and Alzheimer's

Table 1 TMEM106B risk association studies in GRN or C9orf72 mutation carriers

Mutation group	References	Group 1 (N)	Group 2 (<i>N</i>)	Model	SNP	Minor allele	p value ^a	Odds Ratio ^b
GRN	Van Deerlin et al. [76]	CON (2509)	GRN (89)	Allelic	rs1990622	С	1.34×10^{-9}	0.34
	Finch et al. [19]	CON (822)	GRN (78)	Allelic	rs1990622	C	0.0003	0.51
	Finch et al. [19]	CON (822)	GRN (78)	Additive	rs1990622	C	0.003	0.57
	Finch et al. [19]	CON (822)	GRN (78)	Dominant	rs1990622	C	0.088	0.65
	Finch et al. [19]	CON (822)	GRN (78)	Recessive	rs1990622	C	0.003	0.12
	Nicholson et al. [52]	CON (822)	GRN (29)	Recessive	rs1990622	C	0.03	0.15
	Gallagher et al. [21]	CON (2509)	GRN (116)	Allelic	rs1990622	C	< 0.0001	0.37
	Lattante et al. [38]	CON (552)	GRN (76)	Allelic	rs1990622	C	0.0041	0.58
	Lattante et al. [38]	CON (552)	GRN (76)	Recessive	rs1990622	C	9.54×10^{-6}	0

TMEM106B

Measuring Proteins in Your Plasma

Copies of TMEM106B Deletion

Conclusions

- Long-read sequencing (LRS) should help us identify new variants that increase (or decrease!) risk for AD and related disorders
- Having plasma protein measures in subjects with LRS helps us understand how gene changes impact protein levels/function
- So thanks for all your help!

Acknowledgments

Greicius Lab

Michael Belloy Augustine Chemparathy

Yann Le Guen Nandita Kasireddy

Lia Talozzi Ilaria Stewart

Seth Talyansky Maddie Dailey

Stanford

Aaron Gitler Euan Ashley

Zihuai He John Gorzynski

Tanner Jensen Victor Henderson

Beth Mormino

Funding

NIH: RO1 AG060747; R35 AG072290P30; AG066515 (ADRC)