Prospects for cell-based therapies for ILD

Tushar Desai, MD, MPH Stanford Medical School

Division of Pulmonary, Department of Internal Medicine Institute for Stem Cell Biology and Regenerative Medicine

Stem cells produce new cells

- Pluripotent stem cells:
 - Can generate cells of all types for any tissue (embryonic)
 - Can now be made from any cell from an adult person (induced)

- Adult stem cells:
 - Restricted to generating cell types for a specific tissue throughout life (normal adult physiology)
 - Dysfunction can result in diseases of aging (lose activity) or cancer (overactive)
- Adult progenitor cells:
 - Like adult stem cells but more limited capacity for making new cells
 - Dysfunction can result in cancer (e.g., leukemia)

Stem cell diseases

- Blood stem cell failure (myelofibrosis) → anemia
- Blood progenitor cell 'overactivity' → leukemias
- 'stem cell transplants' = blood stem cell transplants
- Mainstay of modern medicine
- <u>Leukemia</u>: purify patient's own stem cells from blood, give chemotherapy to kill diseased progenitor and cancer cells, then infuse back blood stem cells
- <u>Sickle cell anemia</u>: collect blood stem cells from suitable donor, give chemotherapy to kill patient's stem cells, then transfuse donor blood stem cells
 - ** Immune suppression to prevent immune cells generated by donor stem cells from attacking patient tissues!

Donor blood stem cell transplant

Self versus Other

- Immune system
 - Recognizes 'non-self' cells and attacks them
- Re-transplanting your own stem cells:
 - Ideal because no need to suppress your own immune response
 - Sickle cell anemia > purify patient stem cells, use gene-editing to correct mutation in DNA, use chemotherapy to kill residual patient stem cells, then transfuse in "corrected" stem cells

- Transplanting in donor stem cells from another person:
 - Blood stem cells: Suppress foreign immune cells generated by donor blood stem cells from attacking you!
 - Non-blood stem cells: Immune suppression needed to prevent your own immune cells from killing the donor cells (but no worry about donor cells attacking you)

Lung stem cells

Two types of cells in the air sacs

IPF may be a stem cell disease!

The good:

- Lung is easy to access (by bronchoscopy)
- Disease is very active, so even halting progression may be very helpful
- Stem cells could reduce severity of "flares"

The bad:

— How to get rid of defective stem cells without making patients sick?

The unknown:

- After engraftment, will they remain healthy and active?
- Which is more feasible, adult versus pluripotent derived cells and self versus other?

Human lung stem cells grown in the lab

Salahudeen et al, Nature (in revision)

Correcting cystic fibrosis airway stem cells for retransplantation

Krt5 Calcein Green Hoescht

Airway stem cells

Cells from an IPF patient's lungs grown in lab!

Summary

IPF may be a bona fide lung stem cell disease

 Researchers are developing ways to collect and expand lung stem cells for transplantation

• The best source of stem cells (pluripotent versus adult) is not clear

Hopefully coming down the pike!