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Machine Learning Applications in Medical Imaging

e Machine learning and Al techniques have changed the landscape of
medical imaging.

e Many medical tasks such as segmentation, registration, or diagnosis

can be done automatically without any intervention from clinicians.

1. Modality Transformation

(b) Corresponding MRI

2. Segmentation - ‘!

3. Registration




Machine Learning Problems in a Nutshell

-A broad range of machine learning tasks can be reduced to the problem of learning a
target function

h: X — ).
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Machine Learning Problems in a Nutshell

-A broad range of machine learning tasks can be reduced to the problem of learning a

target function
h: X — ).

e Discriminative (classification) model: X = S"*" x S"*Xn x §"xn y = {0,1},

S=1{0,1,--,255}.
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Supervised vs Unsupervised Models

e Supervised models: The paired instances from the target map are
available

(x1,31), s (X, Yn) € X XV, yi = h(x;). (1)

e Unsupervised models: The unpaired instances from each domain is
available (for classification it means class label is unavailable)

X17"'aXn€X7 )/17"'a}/m€y> y’#h(X’)
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How to Learn The Target Map h: X — )

e Supervised models: the target map is learned by minimizing a risk
function over a given training set

;gijg%zé(y,, (xi) ZE (xi), f(xi)

JF: a function class, ¢ : a loss function.
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D(-,-): divergence between two distributions, 6(-) : Dirac’s delta function.

- The variational form of the distance between two distributions P, Q
defined on X:

D(P||@) = max (2)

G /Xg(x)dp(x)—//.Y g(x)dQ(x)|.

G: function class.



Variational form of the divergence

e Total Variation Distance:

TV(P||Q) = sup
g X—Rigllc<1/2

| gaP() = [ g0t

X

e Wasserstein (KantorovichRubinstein) Distance:

Wi(Pl[Q) = sup
g:X—IR:Lip(g)<1

/X g0)4P() — [ g()d0)|.

X

e Maximum Mean Discrepancy Distance:

MMDy(P||Q) = sup
g:X—R:|g||# <1

| g:0P() = [ gd0)]




How to Learn The Target Map h: X — )

e Supervised models: the target map is learned by minimizing a risk
function over a given training set

péig_%zé(y,, (%) Zé h(xi), f(xi)
1

JF: a function class, ¢ : a loss function.

e Unsupervised models: the target map is learned by minimizing the
distance between the empirical distribution of data and the model output

rfr;i;D<P 25 — F(x)IIQ" Zéy yr>7

D(-,-): divergence between two distributions, 6(-) : Dirac’s delta function.
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How to Learn The Target Map h: X — )?

e Supervised models: the target map is learned by minimizing a risk
function over a given training set

mmfZE(y,, 55)) = ZZ xi), f(xi)

F: a function class, / : a loss function.

e Unsupervised models: the target map is learned by minimizing the
distance between the empirical distribution of data and the model output

min max L Zg(y,)— fZg(f Xi)

feF geg

G: function class.
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e Supervised models: the target map is learned by minimizing a risk
function over a given training set

p;ijg%ZZ(y,, (%) ZE h(xi), f(xi)

JF: a function class, ¢ : a loss function.

e Unsupervised models: the target map is learned by minimizing the
distance between the empirical distribution of data and the model output

1
mipmas 2 3000~ 1 X etrto

G: function class.



Deep Neural Networks

'DEEP NEURAL NETWORK
1 2> 3>

-In deep neural networks with n-layers, the parametric function takes the
following form

NN(x; W) = o(W,o(- - 0(Wix)))), Wi € R™ ™,
where W &£ (W4, -+ W,).
-o(+) is the activation function for non-linear function approximation.

1. ReLU:o(x) = max{O x}.

2. logisitc: o(x) = 1+e_X'

3. arctan: o(x) = tan"}(x).



How to Learn The Target Map h: X — )?

e Supervised models: the target map is learned by minimizing a risk
function over a given training set

m|n = E@(y,, Xi)

JF: a function class, ¢ : a loss function.

e Unsupervised models: the target map is learned by minimizing the
distance between the empirical distribution of data and the model output

1
mipmas 2 3000~ 1 X etrto

G: function class.
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How to Learn The T; t Map h: X — V?

e Supervised models: the target map is learned by minimizing a risk
function over a given training set

Wi, W,

. 1, Py
min EZZ(y,-,NN(x,—,W))+Z?||W,-H,2:.
"=t i=1

F={f:X = Y,x— f(x)=NN(x;, W), W € []]_; RM«*Mk-1},

e Unsupervised models: the target map is learned by minimizing the distance
between the empirical distribution of data and the model output

min max ZNN(W/ yi) — 7ZNN(W/ NN(W, x))| .

Wiseoo s Wo WY, W) 1
i=

G={g:¥Y = R,x— g(y) =NN(y, W), W € []_; R™>*Mk-1},
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How to Learn The T; t Map h: X — V?

e Supervised models: the target map is learned by minimizing a risk
function over a given training set

1 n n Ai

min . =Y £(y;, NN(x;, W)) + > ZL||wi|%.

g, 7 D i NG, W)+ 3 S IWIE
F=A{f:X > Y, x— f(x) = NN, W), W € [[;_; R™*Mk-1},

e Unsupervised models: the target map is learned by minimizing the distance
between the empirical distribution of data and the model output

ZNN(W/,y, = 7ZNN(W/ NN(W, x))| .
i=1

min max
Wy, ,Wp W’ W)

Generative Adverserial Networks

G={g: Y —=R,x+ g(y) =NN(y, W), W € J;_; RM>Mk-1}

Training setm Discriminator

Random
noise

.@E Fake

Generator Fake image

12



()]
=
b
(=}
3
B
Q
2
S
S
=
Q
2
Q.
Q
()
(@]
£
(2]
Q
=
()]
9
o0
£
£
..ra
T

e Training GANs with DNNs is difficult, and often results in the

mode collapse.
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Kernel Machines

e Let H denotes the Hilbert space (inner product space with Cauchy
sequence limits) of real-valued functions on X'.

e For x € X, consider the map Ly : H — IR, f — L [f] = f(x). If Ly
is a bounded operator, we say H is a reproducing kernel Hilbert
space (RKHS).

e [, € H" where H* is the dual-space of the Hilbert space H.

e By Riesz representation theorem, there exists an element ¢(x) € H,
such that

L(f) = (f,¢(x))n, VfeH. p‘

e In particular, ¢ : X — H and ¢(y) € H. Therefore,

L(8(y)) = (d(y), $())n & K(x, ).

8 K(x,y): kernel function, ¢(x): feature map.

David Hilbert &
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Kernel Machines

Moore-Aronszajn Theorem . Consider the kernel K : X x X = R is
symmetric and is positive definite in the sense that

n n
ZZCiCjK(XhXj) >0,
i=1 j=1

forallneN, ¢, -+ ,¢c, € IR, and xq,- -+ ,x, € X. Then, there exists a
unique Hilbert space Hx for which K has the reproducing property.
Furthermore, for every function f € Hy, we have the following expansion

f(x) = Z w;K(x,x;), for some x1,xz, - € X.
i=1

15



How to Learn The Target Map h: X — )?

e Supervised models: the target map is learned by minimizing a risk
function over a given training set

p;ijg%ZZ(y,, (%) ZE h(xi), f(xi)

JF: a function class, ¢ : a loss function.

e Unsupervised models: the target map is learned by minimizing the
distance between the empirical distribution of data and the model output

1
mipmas 2 3000~ 1 X etrto

G: function class.

16



How to Learn The Target Map h: X — )?

e Supervised models: the target map is learned by minimizing a risk
function over a given training set

o T 22 2K )+ 5wl

,Wn)

F=Hx={f:X =V, x— X" wK(x,x),welR"}

e Unsupervised models: the target map is learned by minimizing the
distance between the empirical distribution of data and the model output

Zgy, ffZg(NN (W, x)) ‘

G={g: X > R:|glln <1}

min
Wy, ,Wa HgHHK<1
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How to Learn The T; t Map h: X — V?

e Supervised models: the target map is learned by minimizing a risk
function over a given training set ( £(y,x) = max{0,1 — xy}.)

A 2
o min Zé(yl ZWJ (xi, ) ) + Slwllz.

Kernel Support Vector Machines

e Unsupervised models: the target map is learned by minimizing the
distance between the empirical distribution of data and the model output

m

i MMDy (P, [|Q™) = E Uiy + E K(NN(W, x;), NN(W, x;))
1y, W,
J=1 ij=1

2 n m
%ZZ (v;s NN(W, x;)),

Generative Moment Matching Networks

, where y1,- -+, ym ~iid. Q, and NN(W,x1), - ,NN(W, xp) ~iid. Pw.

18



Kernel Selection Problem

Kernel Model Selection Problem: A bad kernel may yield a poor
machine learning system.

(a) (b) (c) (d)

Figure 1: t-SNE plot for feature maps generated by Gaussian kernel
K(x,y) = e~ "lIx=¥l2 for different bandwidth values v > 0.

AN o Ty O
D WN D (Lo -
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Kernel Optimization

e Supervised models: the target map is learned by minimizing a risk
function over a given training set (¢(y,x) = max{0,1 — xy}.)

R e
(. mvlvr:)E]R" Kek n Z€<y"ZMK(X”>9 ) + 3 lwllz-

Kernel Support Vector Machines

e Unsupervised models: the target map is learned by minimizing the
distance between the empirical distribution of data and the model output

,min PaxMMDK(PWHQm = — Z K(yi, ;) = Z K(NN(W, x;), NN(W, x;))
1, Wn
ij=1 ij=1
= —ZZK v;, NN(W, x;))
i=1 j=1

Generative Moment Matching Networks

, where y1,- -+, ym ~iid. Q, and NN(W,x1), - ,NN(W, xp) ~iid. Pw.
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Kernel Optimization

e Suppose the kernel function is shift invariant K(x,y) = K(x — y).

e Rahimi and Recht ! proved that shift invariant kernels have the
following Fourier representation

K(x - y) = Bulo(x.€)p(y, £)] = / o, E)ply, E)Au(E),

RP
where ¢(x, &) = cos((x, &) + b), b ~ Uniform([0, 27]).

e o(x,&) is called the random feature map since

K(x —y) = (o(x), d(y))n = (0(x,€), (¥, €)) 2()-

LAli Rahimi and Benjamin Recht. Random Features for Large-Scale Kernel Machines
NIPS 2007.

21



Kernel Optimization

e Supervised models: the target map is learned by minimizing a risk
function over a given training set (¢(y,x) = max{0,1 — xy}.)

m|n max726<y,,zwj ule(xi, §)w (Mﬁ)])"‘%”wﬂg

(Wi, ,wn)ER" LEP N

Kernel Support Vector Machines

e Unsupervised models: the target map is learned by minimizing the
distance between the empirical distribution of data and the model output

min  max MMDk (PR [|Q™) = — ZIEM [e(yi, &)y, €)]
Wy, s Wy pe =

Z B, [¢(NN(W, x;), €)p(NN(W, x;), £)]

ij=1

-= ZZIE;M ¥j» )9(NN(W, ), &)].

i=1 j=1
. where y1,- -, ym ~iid. Q, and NN(W,x1), - ,NN(W,x,) ~iid Pw.
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Kernel Optimization

e Supervised Models: For binary classification ) = {—1,+1} using
kernel SVMs, we optimize the kernel target alignment.
2
maX ———= Z ylyJ]EM[(fg(XHE)(p(vag)]

ueP n(n—1) S

e Unsupervised Models: We optimize the kernel target alignment

(M=m+n)
2
. s 21 . 8],
o™, T R — 1) Zm Wl ©)0(v;. ©)]
where zy, -+, zpy ~ Uniform{—1,+1} and

1. If z =41, let vi € {y1,- -+ ,ym} (true data).
2. If zi=—1let v € {NN(W,x1),--- ,NN(W,x,)} (generated data).

23



Kernel Optimization

e Step 1: Lets focus on the following optimization problem

2
i i 'IEL is iy )
er,wr,]Wn ?ea%( (M= 1) 1<;§-<:,,+mzzj I [o(vi, &)e(v;, &)l
where zy, -+, zpy ~ Uniform{—1,4+1} and

1. If zi=+1, let v; € {y1,-~~ ,ym}.
2. If zi=—1let v € {(NN(W,x1),--- ,NN(W,x,)}.

e \We rewrite the problem as a risk minimization

min max# Z (aZiZj—IEN[SO(Vhf)‘P(ij)])Q-

Wh,--- W, neP ()/M(M = ].) 1<i<j<n

24



Kernel Optimization

e Step 2: We apply the Monte-Carlo sample average approximation.

e In particular, we optimize with respect to samples of the i.i.d.
samples of the target distribution &%, -+, €N ~iiq. 1,

. 2
: 2 1
TN, _max, oMM 1) 1<§<,, (az,zJ - N ;::1 99(X>£k)90()/7€k)> ;
where PN & (7N ¢ M(RP) : D(7||AN) < R}.
e We define the empirical distribution of the samples (particles) as
below

=|

~N 1 - k
AM(E) = 5 D_ o€~ €. (4)

25



Particle Stochastic Gradient Descent

e Step 3: Use a particle stochastic gradient descent method to solve
the risk minimization as follows:

1. Initialize the samples fé, S ,5(’)\’ ~iid. [o-

2. At iteration £ =0,1,2,---, we draw two fresh labels
20,2y ~ Uniform{—1, +1}.

3. Sample vp € {y1, - ,ym} if zz =1, and
ve € {INN(W, x1),--- ,NN(W, x,)} zz = —1. We pick v; using a
similar rule.

4. Apply the particle SGD with the step size n > 0

N
Eg“ &=L <Zﬁe = aiN Zw(w:éé)w(%:é?)) Ve <W(Ve;§5)@(7e;ﬁf))7
N =1

fork=1,2,--- N.
5. Approximate the kernel

N
Key1(x, y) NZ X €11) (v €611)- (5)
k=1

26



Evolution of the Histogram of SGD Particles

i

(c) (d)
Figure 2: The evolution of the empirical measure )/ (€£) = %ZL\’:I 5(& — &) of the
SGD particles 5}, e ,52’ € IR? at different iterations £. The empirical measure of

random feature maps seemingly converges to a Gaussian stationary measure
corresponding to a Gaussian RBF kernel. Panel (a): ¢ =0, Panel (b): ¢ = 300, Panel
(c): £=1000, and Panel (d): £ = 2500. 27



Consistency of Monte-Carlo Approximations

Theorem: Consider the distribution ball with respect to the
2-Wasserstein distance P = {u € M(IRP) : Wa(pul|p0) < R}, where pg
is a user-defined distribution. Furthermore, consider

(W, 1) = arg min arg sup MMD,,[Pw, Q]

WN Ny &ef f MMDA P Q"
( * a,“*) arg mEInWargA’JQP N[ w ]a

where

MMD, [Pw, Q] = Epg2[EL[p(NN(x, W), £)o(NN(x, W), £)]] + Ege2[ELu[e(y, &)y, €)]]
—2Ep o[E.[e(NN(x, W), &)¢(y, €)]],
and

MMDgn [Pjy, Q"]
2
2
:m Z <az,zj ng (NN(v;, W §,<)4,¢;(NN(\,J7 )7£k)>_

1<i<j<n
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Consistency of Monte-Carlo Approximations

Then, with the probability of (at least) 1 — 3p over the training data
samples {(x;,y;)}7_, and the random feature samples {&¢4}_,, the
following non-asymptotic bound holds

d+ 2) 28Nd1am (X)) N 8L2
(e
L4
4 <:2R’L4 4e9
+ 2 max — 3 In| —— s
n 4

where ¢; = 37 x 2%, and ¢ = 9 x 211,

‘MMD#[PW, Q] — MMD;w [Py, Q"
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Consistency of Monte-Carlo Approximations

Then, with the probability of (at least) 1 — 3p over the training data

samples {(x;,y;)}7_; and the random feature samples {&4}_,, the
following non-asymptotic bound holds

2(d + 2) 28Nd1am (Xx) N 812
«
L4
4 o RL* 4e9
+ 2 max -, In| — s
n? 0

where ¢; = 3% x 2% and ¢, = 9 x 211,

‘MMDN[PW, Q] — MMD [Py, Q"

N: The number of random feature samples (Particles) &%, --- &N in
Particle SGD.
n: The number of training samples y1,--- ,y, € YV, and xq,--- ,x, € X.

«: Regularization parameter of the empirical risk minimization.
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ence of the empirical measure to a limiting measure

(a) (b) (c)
Figure 3: The histogram of the SGD particles at a fixed iteration £ = 10000 and for
different number of particles. Panel (a): N = 1000, Panel (b): N = 10000, Panel (c):
N = 50000.

1
e As N — oo, it seems that i)} = i STh_, 6(€ — £X) converges to a

limiting measure p;.
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Consistency of the Particle SGD

Theorem: (MCKEAN-VLASOV MEAN-FIELD PDE) Define the scaled
empirical measure of the SGD particles embedded in the continuous time

Further, suppose that the Lebesgue density of the initial measure of
particles go(&) = po(d€)/d€ exists. Then, there exists a unique solution
(pf(€))o<e<T to the following non-linear partial differential equation

apatiﬁ) )
==L [ (L, ¢80 0p(@0E ~ a22) Velor(©)Velovi 6T )aPF,

where Py 7 has the marginals Py z—,; = Pw and Py|z—_; = Q. The
PDE is initialized at po(&) = qo(&). Moreover, the measure-valued
process {(uM)o<t<T}nen converges (weakly) to the unique solution
wi(€) = pi(€)d€ as the number of particles tend to infinity N — oc.
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Consistency of the Particle SGD

e The Mean-Field PDE can be viewed as the gradient flow for minimizing

an energy functional

dpt(ﬁ) _
dt

where grad, E(p:(£)) = Ve - (pe(§)VeRs(pe(£))) is the Riemannian
gradient of Ra(u:(€)) with respect to the metric of the Wasserstein

—n - grad, Ea(p:(£)),  po(€) = qo(€),

manifold, and

def 1

nf, Ealpe(€) 2 /]R RAGIAGIAGEE

pneM(IRP

Rs (€, pe(£)) & —a(Ep, ,[Zp(V;€)])?
+ g, [(EPV (Vi &)e(V; 5)])2] :

e The Energy functional is precisely the population MMD, i.e.,
Ea(p:(§)) = MMDy, [P, Q], where p:(€) = pe(€)/d§.
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Simulations on Synthetic Data-Set

Figure 4: Panel (a): A = 0.1, Panel (b): A = 0.5, and Panel (c): A =0.9.

e Consider the problem of two sample test between two Gaussian
distributions

1. Py = N(0, (1 — \)laxa).
2. P = N(O, (1 + )\)Idxd)-
e ) € [0,1] controls the distance between these two distributions.
e Given samples Xi, -+, X, ~iiq. Po and Zy,--- , Z, ~~iiq P1, we
want to decide between the following hypotheses
1. Null Hypothesis Ho: Po = P1 (A =0)
2. Alternative Hypothesis Hi: Py # P, (A > 0)

34



Simulations on hetic Data-Set

e We design a test statistics as below

Ho if MMDk[{V;}7, {Wi}r,] <7

TV (W) & i :
({VidiZs, (Wikia) Hy if MMDk [{Vi}™, {Wi}r,] > 7,

\ —2=09 —2=09 —2=09
708 \ ~A=05 708 “A=08 w0g ~-A=05
& A=01 E A=01]) 3 A=0.1
£06 \ Zo6 £06
A 1 ] ks
204 \ 04 204
£ 1 E g
202 \ 02 202

0 0 0 >,

0 02 04 06 08 1 o 04 06 08 1 0 02 04 06 08 1

threshold T threshold threshold T

(a) (b) (c)

Figure 5: The statistical power, IP(reject Hg|H1 is true), versus the threshold
for the binary hypothesis testing via the unbiased estimator of the kernel MMD.
Panel (a): Trained kernel using the two-phase procedure with the particle SGD
and an auto-encoder, Panel (b): Trained kernel with an auto-encoder and a fixed

Gaussian kernel with the bandwidth o = 1, Panel (c): Untrained kernel without
an auto-encoder.
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Simulations on Real Data-Set: Qualitative Assessment

NETENTE W
NNN - RN

i
b-j
3
>

7

S

7
\
=
0

Noged gD e PEE
~Nd WS wRoe e
NOJI-Q Y
v e
—~N~R0O
QWL N0 Q0 WS
W 1D TN O

a b [¢
Figure 6: Sample gene(ra)ted images using C(IlgAR—lO and MNIS'I(' ()1ata—sets.Pane| (a):
Proposed MMD GAN with an automatic kernel selection via the particle SGD, Panel
(b): MMD GAN with an auto-encoder optimization in conjunction with a mixed RBF
Gaussian kernel, where the Gaussian bandwidths are manually tuned, Panel (c): MMD
GAN with a single RBF Gaussian kernel with an auto-encoder optimization in
conjunction with a single RBF Gaussian kernel where the Gaussian bandwidth is

manually tuned. L



Simulations on Real Data-Set: Quantitative Assessment

H Method FID (1) IS (1) H
MMD GAN (Gaussian) 67.244 +0.134  5.608+0.051
MMD GAN (Mixture Gaussian) ~ 67.129 £0.148  5.850+0.055
Our Algorithm 65.059 +0.153 5.97 + 0.046
Benchmark - 11.2374+0.116

Table 1: Comparison of the quantitative performance measures of MMD GANs
with different kernel learning approaches.
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Conclusion

e Many machine learning tasks deal with the problem of learning a
map between two domains.

e Machine learning systems divide into the supervised and
unsupervised models based on the training samples. The hybrid
version is often called semi-supervised model.

e Kernel methods provide an alternative method to deep learning to

learn functions.

e However, there are model selection issues in kernel methods that
need to be addressed. In this talk, we proposed a novel method to
resolve those model selection issues.
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