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Machine Learning Applications in Medical Imaging

• Machine learning and AI techniques have changed the landscape of

medical imaging.
• Many medical tasks such as segmentation, registration, or diagnosis

can be done automatically without any intervention from clinicians.
1. Modality Transformation

2. Segmentation

3. Registration
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Machine Learning Problems in a Nutshell

-A broad range of machine learning tasks can be reduced to the problem of learning a

target function

h : X ! Y.

• Discriminative (classification) model: X = Sn⇥n ⇥ Sn⇥n ⇥ Sn⇥n,Y = {0, 1},
S = {0, 1, · · · , 255}.

• Generative (sampling) model: X = IR, Y = Sn⇥n ⇥ Sn⇥n ⇥ Sn⇥n
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Supervised vs Unsupervised Models

• Supervised models: The paired instances from the target map are

available

(x1, y1), · · · , (xn, yn) 2 X ⇥ Y, yi = h(xi ). (1)

• Unsupervised models: The unpaired instances from each domain is

available (for classification it means class label is unavailable)

x1, · · · , xn 2 X , y1, · · · , ym 2 Y, yi 6= h(xi ).
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How to Learn The Target Map h : X ! Y ⇤

• Supervised models: the target map is learned by minimizing a risk

function over a given training set

min
f2F

1

n

nX

i=1

`(yi , f (xi )) =
1

n

nX

i=1

`(h(xi ), f (xi )).

F : a function class, ` : a loss function.

• Unsupervised models: the target map is learned by minimizing the

distance between the empirical distribution of data and the model output

min
f2F

D

 
bPn

=
1

n

nX

i=1

�(y � f (xi ))|| bQm
=

1

m

mX

i=1

�(y � yi )

!
,

D(·, ·): divergence between two distributions, �(·) : Dirac’s delta function.

- The variational form of the distance between two distributions P,Q

defined on X :

D(P||Q) = max
g2G

����
Z

X

g(x)dP(x)�

Z

X

g(x)dQ(x)

���� . (2)

G: function class.
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Variational form of the divergence

• Total Variation Distance:

TV(P ||Q) = sup
g :X!IR:kgk11/2

����
Z

X

g(x)dP(x)�

Z

X

g(x)dQ(x)

���� .

• Wasserstein (KantorovichRubinstein) Distance:

W1(P ||Q) = sup
g :X!IR:Lip(g)1

����
Z

X

g(x)dP(x)�

Z

X

g(x)dQ(x)

���� .

• Maximum Mean Discrepancy Distance:

MMDH(P ||Q) = sup
g :X!IR:kgkH1

����
Z

X

g(x)dP(x)�

Z

X

g(x)dQ(x)

���� .
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How to Learn The Target Map h : X ! Y? ⇤

• Supervised models: the target map is learned by minimizing a risk

function over a given training set

min
f2F

1

n

nX

i=1

`(yi , f (xi )) =
1

n
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1
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Deep Neural Networks

-In deep neural networks with n-layers, the parametric function takes the
following form

NN(x ;W )
def
= �(Wn�(· · ·�(W1x)))), Wk 2 IRmk⇥mk�1 ,

where W def
= (W1, · · · ,Wn).

-�(·) is the activation function for non-linear function approximation.

1. ReLU:�(x) = max{0, x}.

2. logisitc: �(x) = 1

1+e�x .

3. arctan: �(x) = tan
�1

(x).
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How to Learn The Target Map h : X ! Y? ⇤

• Supervised models: the target map is learned by minimizing a risk

function over a given training set

min
W1,··· ,Wn

1

n

nX

i=1

`(yi ,NN(xi ,W )) +

nX

i=1

�i

2
kWik2F .

F = {f : X ! Y, x 7! f (x) = NN(xi ,W ),W 2
Qn

k=1
IRmk⇥mk�1}.

• Unsupervised models: the target map is learned by minimizing the distance

between the empirical distribution of data and the model output

min
W1,··· ,Wn

max
W 0

1
,··· ,W 0

n

�����
1

m

mX

i=1

NN(W 0, yi )�
1

n

nX

i=1

NN(W 0,NN(W , x))

����� .

G = {g : Y ! IR, x 7! g(y) = NN(y ,W ),W 2
Qn

k=1
IRmk⇥mk�1}.
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n
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1

m

mX

i=1

NN(W 0, yi )�
1

n

nX

i=1

NN(W 0,NN(W , x))

����� .

| {z }
Generative Adverserial Networks

G = {g : Y ! IR, x 7! g(y) = NN(y ,W ),W 2
Qn

k=1
IRmk⇥mk�1}.
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Training Issues in Deep Neural Networks

• Training GANs with DNNs is di�cult, and often results in the

mode collapse.
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Kernel Machines

• Let H denotes the Hilbert space (inner product space with Cauchy

sequence limits) of real-valued functions on X .

• For x 2 X , consider the map Lx : H ! IR, f 7! Lx [f ] = f (x). If Lx
is a bounded operator, we say H is a reproducing kernel Hilbert

space (RKHS).

• Lx 2 H
⇤, where H

⇤ is the dual-space of the Hilbert space H.

• By Riesz representation theorem, there exists an element �(x) 2 H,

such that

Lx(f ) = hf ,�(x)iH, 8f 2 H.

•

• In particular, � : X ! H and �(y) 2 H. Therefore,

Lx(�(y)) = h�(y),�(x)iH
def
= K (x , y).

• K (x , y): kernel function, �(x): feature map.
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Kernel Machines

Moore-Aronszajn Theorem . Consider the kernel K : X ⇥ X ! IR is

symmetric and is positive definite in the sense that

nX

i=1

nX

j=1

cicjK (xi , xj) > 0,

for all n 2 N, c1, · · · , cn 2 IR, and x1, · · · , xn 2 X . Then, there exists a

unique Hilbert space HK for which K has the reproducing property.

Furthermore, for every function f 2 HK , we have the following expansion

f (x) =
1X

i=1

wiK (x , xi ), for some x1, x2, · · · 2 X .
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How to Learn The Target Map h : X ! Y? ⇤

• Supervised models: the target map is learned by minimizing a risk

function over a given training set

min
(w1,··· ,wn)2IRn

1

n

nX

i=1

`
⇣
yi ,

nX

j=1

wjK(xi , xj)
⌘
+

�
2
kwk

2

2.

F = HK =
�
f : X ! Y, x 7!

Pn
i=1

wiK(x , xi ),w 2 IRn
 

• Unsupervised models: the target map is learned by minimizing the

distance between the empirical distribution of data and the model output

min
W1,··· ,Wn

max
kgkHK

1

�����
1

m

mX

i=1

g(yi )�
1

n

nX

i=1

g(NN(W , xi ))

����� .

G = {g : X ! IR : kgkHK  1}.
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How to Learn The Target Map h : X ! Y? ⇤

• Supervised models: the target map is learned by minimizing a risk

function over a given training set ( `(y , x) = max{0, 1� xy}.)

min
(w1,··· ,wn)2IRn

1

n

nX

i=1

`
⇣
yi ,

nX

j=1

wjK(xi , xj)
⌘
+

�
2
kwk

2

2

| {z }
Kernel Support Vector Machines

.

• Unsupervised models: the target map is learned by minimizing the

distance between the empirical distribution of data and the model output

min
W1,··· ,Wn

MMDK (
bPn
W || bQm

) =
1

m2

mX

i,j=1

K(yi , yj ) +
1

n2

nX

i,j=1

K(NN(W , xi ),NN(W , xi ))

�
2

nm

nX

i=1

mX

j=1

K(yj ,NN(W , xi ))

| {z }
Generative Moment Matching Networks

,

, where y1, · · · , ym ⇠i.i.d. Q, and NN(W , x1), · · · ,NN(W , xn) ⇠i.i.d. PW .
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Kernel Selection Problem

Kernel Model Selection Problem: A bad kernel may yield a poor

machine learning system.

Figure 1: t-SNE plot for feature maps generated by Gaussian kernel

K(x , y) = e��kx�yk2 for di↵erent bandwidth values � > 0.
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Kernel Optimization

• Supervised models: the target map is learned by minimizing a risk

function over a given training set (`(y , x) = max{0, 1� xy}.)

min
(w1,··· ,wn)2IRn

max
K2K

1

n

nX

i=1

`
⇣
yi ,

nX

j=1

wjK(xi , xj)
⌘
+

�
2
kwk

2

2

| {z }
Kernel Support Vector Machines

.

• Unsupervised models: the target map is learned by minimizing the

distance between the empirical distribution of data and the model output

min
W1,··· ,Wn

max
K2K

MMDK (
bPn
W || bQm

) =
1

m2

mX

i,j=1

K(yi , yj ) +
1

n2

nX

i,j=1

K(NN(W , xi ),NN(W , xi ))

�
2

nm

nX

i=1

mX

j=1

K(yj ,NN(W , xi ))

| {z }
Generative Moment Matching Networks

, where y1, · · · , ym ⇠i.i.d. Q, and NN(W , x1), · · · ,NN(W , xn) ⇠i.i.d. PW .
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Kernel Optimization

• Suppose the kernel function is shift invariant K (x , y) = K (x � y).

• Rahimi and Recht 1 proved that shift invariant kernels have the

following Fourier representation

K (x � y) = IEµ['(x , ⇠)'(y , ⇠)] =

Z

IRD

'(x , ⇠)'(y , ⇠)dµ(⇠),

where '(x , ⇠) = cos(hx , ⇠i+ b), b ⇠ Uniform([0, 2⇡]).

• '(x , ⇠) is called the random feature map since

K (x � y) = h�(x),�(y)iH = h'(x , ⇠),'(y , ⇠)iL2(µ).

1
Ali Rahimi and Benjamin Recht. Random Features for Large-Scale Kernel Machines

NIPS 2007.
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Kernel Optimization

• Supervised models: the target map is learned by minimizing a risk

function over a given training set (`(y , x) = max{0, 1� xy}.)

min
(w1,··· ,wn)2IRn

max
µ2P

1

n

nX

i=1

`
⇣
yi ,

nX

j=1

wj IEµ['(xi , ⇠)'(xj , ⇠)]
⌘
+

�
2
kwk

2

2

| {z }
Kernel Support Vector Machines

.

• Unsupervised models: the target map is learned by minimizing the

distance between the empirical distribution of data and the model output

min
W1,··· ,Wn

max
µ2P

MMDK (
bPn
W || bQm

) =
1

m2

mX

i,j=1

IEµ['(yi , ⇠)'(yj , ⇠)]

+
1

n2

nX

i,j=1

IEµ['(NN(W , xi ), ⇠)'(NN(W , xi ), ⇠)]

�
2

nm

nX

i=1

mX

j=1

IEµ['(yj , ⇠)'(NN(W , xi ), ⇠)].

, where y1, · · · , ym ⇠i.i.d. Q, and NN(W , x1), · · · ,NN(W , xn) ⇠i.i.d. PW .
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Kernel Optimization

• Supervised Models: For binary classification Y = {�1,+1} using

kernel SVMs, we optimize the kernel target alignment.

max
µ2P

2

n(n � 1)

X

1i<jn

yiyj IEµ['(xi , ⇠)'(xj , ⇠)].

• Unsupervised Models: We optimize the kernel target alignment

(M = m + n)

min
W1,··· ,Wn

max
µ2P

2

M(M � 1)

X

1i<jn+m

zizj IEµ['(vi , ⇠)'(vj , ⇠)],

where z1, · · · , zM ⇠ Uniform{�1,+1} and

1. If zi = +1, let vi 2 {y1, · · · , ym} (true data).

2. If zi = �1 let vi 2 {NN(W , x1), · · · ,NN(W , xn)} (generated data).
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Kernel Optimization

• Step 1: Lets focus on the following optimization problem

min
W1,··· ,Wn

max
µ2P

2

M(M � 1)

X

1i<jn+m

zizj IEµ['(vi , ⇠)'(vj , ⇠)],

where z1, · · · , zM ⇠ Uniform{�1,+1} and

1. If zi = +1, let vi 2 {y1, · · · , ym}.

2. If zi = �1 let vi 2 {NN(W , x1), · · · ,NN(W , xn)}.

• We rewrite the problem as a risk minimization

min
W1,··· ,Wn

max
µ2P

2

↵M(M � 1)

X

1i<jn

(↵zizj � IEµ['(vi , ⇠)'(vj , ⇠)])
2.
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Kernel Optimization

• Step 2: We apply the Monte-Carlo sample average approximation.

• In particular, we optimize with respect to samples of the i.i.d.

samples of the target distribution ⇠1, · · · , ⇠N ⇠i.i.d. µ,

min
W1,··· ,Wn

max
bµN2PN

2

↵M(M � 1)

X

1i<jn

 
↵zizj �

1

N

NX

k=1

'(x , ⇠k)'(y , ⇠k)

!2

,

where P
N def
= {bµN

2 M(IRD) : D(bµ||bµN
0
)  R}.

• We define the empirical distribution of the samples (particles) as

below

bµN(⇠) =
1

N

NX

i=1

�(⇠ � ⇠k). (4)
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Particle Stochastic Gradient Descent

• Step 3: Use a particle stochastic gradient descent method to solve
the risk minimization as follows:

1. Initialize the samples ⇠10 , · · · , ⇠
N
0 ⇠i.i.d. µ0.

2. At iteration ` = 0, 1, 2, · · · , we draw two fresh labels

z`, ez` ⇠ Uniform{�1,+1}.

3. Sample v` 2 {y1, · · · , ym} if z` = 1, and

v` 2 {NN(W , x1), · · · ,NN(W , xn)} z` = �1. We pick evt using a

similar rule.

4. Apply the particle SGD with the step size ⌘ > 0

⇠k`+1
= ⇠k` �

⌘

N

 
z`ez` �

1

↵N

NX

k=1

'(v`; ⇠k` )'(ev`; ⇠
k
` )

!
r⇠

⇣
'(v`; ⇠k` )'(ev`; ⇠

k
` )

⌘
,

for k = 1, 2, · · · ,N.

5. Approximate the kernel

K`+1(x , y) ⇡
1

N

NX

k=1

'(x ; ⇠k`+1
)'(y ; ⇠k`+1

). (5)
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Evolution of the Histogram of SGD Particles

(a) (b)

(c) (d)

Figure 2: The evolution of the empirical measure µN
` (⇠) =

1

N

PN
k=1

�(⇠ � ⇠k` ) of the

SGD particles ⇠1` , · · · , ⇠
N
` 2 IR2

at di↵erent iterations `. The empirical measure of

random feature maps seemingly converges to a Gaussian stationary measure

corresponding to a Gaussian RBF kernel. Panel (a): ` = 0, Panel (b): ` = 300, Panel

(c): ` = 1000, and Panel (d): ` = 2500. 27



Consistency of Monte-Carlo Approximations

Theorem: Consider the distribution ball with respect to the

2-Wasserstein distance P = {µ 2 M(IRD) : W2(µ||µ0)  R}, where µ0

is a user-defined distribution. Furthermore, consider

(W⇤, µ⇤)
def
= arg min

W2W

arg sup
µ2P

MMDµ[PW ,Q]

(cW N
⇤
, bµN

⇤
)
def
= arg min

W2W

arg inf
bµN2PN

\MMD
↵

bµN [bPn
W , bQn],

where

MMDµ[PW ,Q] = IEP⌦2 [IEµ['(NN(x ,W ), ⇠)'(NN(x ,W ), ⇠)]] + IEQ⌦2 [IEµ['(y , ⇠)'(y
0, ⇠)]]

� 2IEP,Q [IEµ['(NN(x ,W ), ⇠)'(y , ⇠)]],

and

\MMD
↵
bµN [bPn

W , bQn
]

=
2

↵2n(2n � 1)

X

1i<jn

 
↵zi zj �

1

N

NX

k=1

'(NN(vi ,W ), ⇠k )'(NN(vj ,W ), ⇠k )

!2

.
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Consistency of Monte-Carlo Approximations

Then, with the probability of (at least) 1� 3% over the training data
samples {(xi , yi )}ni=1

and the random feature samples {⇠k
0
}
N
k=1

, the
following non-asymptotic bound holds

���MMDµ[PW ,Q]� \MMD
↵
bµN [bPn

W , bQn
]

��� 

s
L2(d + 2)

N
ln

1

2

✓
2
8Ndiam2

(X )

%

◆
+

8L2

↵

+ 2max

8
<

:
c1L2

n
ln

1

2

✓
4

%

◆
,
c2RL4

n2
ln

0

@4e
L4

9

%

1

A

9
=

; ,

where c1 = 3
1

4 ⇥ 24, and c2 = 9⇥ 211.
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Consistency of Monte-Carlo Approximations

Then, with the probability of (at least) 1� 3% over the training data
samples {(xi , yi )}ni=1

and the random feature samples {⇠k
0
}
N
k=1

, the
following non-asymptotic bound holds

���MMDµ[PW ,Q]� \MMD
↵
bµN [bPn

W , bQn
]

��� 
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L2(d + 2)
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%
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+
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+ 2max
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%
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,
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n2
ln

0

@4e
L4
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%

1

A

9
=

; ,

where c1 = 3
1

4 ⇥ 24, and c2 = 9⇥ 211.

N: The number of random feature samples (Particles) ⇠1, · · · , ⇠N in

Particle SGD.

n: The number of training samples y1, · · · , yn 2 Y, and x1, · · · , xn 2 X .

↵: Regularization parameter of the empirical risk minimization.
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Convergence of the empirical measure to a limiting measure

(a) (b) (c)

Figure 3: The histogram of the SGD particles at a fixed iteration ` = 10000 and for

di↵erent number of particles. Panel (a): N = 1000, Panel (b): N = 10000, Panel (c):

N = 50000.

• As N ! 1, it seems that bµN
` =

1

N

PN
k=1

�(⇠ � ⇠k` ) converges to a

limiting measure µ⇤

` .
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Consistency of the Particle SGD

Theorem: (McKean-Vlasov Mean-Field PDE) Define the scaled

empirical measure of the SGD particles embedded in the continuous time

µN
t = bµN

bNtc =
1

N

NX

k=1

�(⇠ � ⇠bNtc), 0  t  T .

Further, suppose that the Lebesgue density of the initial measure of
particles q0(⇠) = µ0(d⇠)/d⇠ exists. Then, there exists a unique solution
(p⇤t (⇠))0tT to the following non-linear partial di↵erential equation

@pt(⇠)

@t
(7)

= �
⌘

↵

ZZ

X⇥Y

✓Z

IRp
'(v , e⇠)'(ev , e⇠)pt(e⇠)de⇠ � ↵zez

◆
r⇠(pt(⇠)r⇠('(v ; ⇠)'(ev ; ⇠))dP⌦2

V ,Z ,

where PV ,Z has the marginals PV |Z=+1 = PW and PV |Z=�1 = Q. The

PDE is initialized at p0(⇠) = q0(⇠). Moreover, the measure-valued

process {(µN
t )0tT}N2N converges (weakly) to the unique solution

µ⇤

t (⇠) = p
⇤

t (⇠)d⇠ as the number of particles tend to infinity N ! 1.
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Consistency of the Particle SGD

• The Mean-Field PDE can be viewed as the gradient flow for minimizing

an energy functional

dpt(⇠)
dt

= �⌘ · gradpt
E↵(pt(⇠)), p0(⇠) = q0(⇠),

where gradpt
E(pt(⇠)) = r⇠ · (pt(⇠)r⇠R�(pt(⇠))) is the Riemannian

gradient of R�(µt(⇠)) with respect to the metric of the Wasserstein

manifold, and

inf
µ2M(IRp)

E↵(pt(⇠))
def
=

1

↵

Z

IRp
R↵(⇠, pt(⇠))pt(⇠)d⇠

R�(⇠, pt(⇠))
def
= �↵(IEPV ,Z [Z'(V ; ⇠)])2

+ IEe⇠⇠pt

h⇣
IEPV ['(V ; ⇠)'(V ; e⇠)]

⌘
2
i
,

• The Energy functional is precisely the population MMD, i.e.,

E↵(pt(⇠)) = MMD↵
µt [P,Q], where pt(⇠) = µt(⇠)/d⇠.
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Simulations on Synthetic Data-Set

Figure 4: Panel (a): � = 0.1, Panel (b): � = 0.5, and Panel (c): � = 0.9.

• Consider the problem of two sample test between two Gaussian
distributions
1. P0 = N(0, (1� �)Id⇥d).

2. P1 = N(0, (1 + �)Id⇥d).

• � 2 [0, 1] controls the distance between these two distributions.
• Given samples X1, · · · ,Xm ⇠i.i.d. P0 and Z1, · · · ,Zn ⇠⇠i.i.d. P1, we

want to decide between the following hypotheses
1. Null Hypothesis H0: P0 = P1 (� = 0)

2. Alternative Hypothesis H1: P0 6= P1 (� > 0)
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Simulations on Synthetic Data-Set

• We design a test statistics as below

T ({Vi}
m
i=1

, {Wi}
n
i=1

)
def
=

(
H0 if \MMDK

⇥
{Vi}

m
i=1

, {Wi}
n
i=1

⇤
 ⌧

H1 if \MMDK

⇥
{Vi}

m
i=1

, {Wi}
n
i=1

⇤
> ⌧,

.

(a) (b) (c)

Figure 5: The statistical power, IP(reject H0|H1 is true), versus the threshold ⌧

for the binary hypothesis testing via the unbiased estimator of the kernel MMD.

Panel (a): Trained kernel using the two-phase procedure with the particle SGD

and an auto-encoder, Panel (b): Trained kernel with an auto-encoder and a fixed

Gaussian kernel with the bandwidth � = 1, Panel (c): Untrained kernel without

an auto-encoder.
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Simulations on Real Data-Set: Qualitative Assessment

(a) (b) (c)

Figure 6: Sample generated images using CIFAR-10 and MNIST data-sets.Panel (a):

Proposed MMD GAN with an automatic kernel selection via the particle SGD, Panel

(b): MMD GAN with an auto-encoder optimization in conjunction with a mixed RBF

Gaussian kernel, where the Gaussian bandwidths are manually tuned, Panel (c): MMD

GAN with a single RBF Gaussian kernel with an auto-encoder optimization in

conjunction with a single RBF Gaussian kernel where the Gaussian bandwidth is

manually tuned.
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Simulations on Real Data-Set: Quantitative Assessment

Method FID (#) IS (")

MMD GAN (Gaussian) 67.244± 0.134 5.608±0.051

MMD GAN (Mixture Gaussian) 67.129± 0.148 5.850±0.055

Our Algorithm 65.059± 0.153 5.97± 0.046

Benchmark - 11.237±0.116

Table 1: Comparison of the quantitative performance measures of MMD GANs

with di↵erent kernel learning approaches.
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Conclusion

• Many machine learning tasks deal with the problem of learning a

map between two domains.

• Machine learning systems divide into the supervised and

unsupervised models based on the training samples. The hybrid

version is often called semi-supervised model.

• Kernel methods provide an alternative method to deep learning to

learn functions.

• However, there are model selection issues in kernel methods that

need to be addressed. In this talk, we proposed a novel method to

resolve those model selection issues.
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