MR-Guided Mixed Reality for Breast Conserving Surgical **Planning**

Suba Srinivasan (subashini7@gmail.com)

March 30th 2017

Mentors: Prof. Brian A. Hargreaves, Prof. Bruce L. Daniel

MRI Guided Mixed Reality for Surgical Planning

 Early stage breast cancer treatment is removal of tumor - lumpectomy

Post wire-localization

24% Wilke et al., 2014

- close margins
- mastectomy
- 3mm Ductal Carcinoma in situ (DCIS) at biopsy site

Current Breast Imaging Techniques

http://www.cancer.gov/

http://weill.cornell.edu/mri/MRI/Chest/breast_mass_mri.htm

Prone vs. Supine Breast MRI

Objective

To enable surgeons to do more definitive surgeries by

- acquiring MR images in close to surgical position - supine instead of prone breast MRI
- Projecting these 3D MR images on to the patient for surgical planning

HoloLens - for Surgical Planning

Phantom MRI Dataset

Patient MRI

Deformable Registration

Segmentation

Warped dataset

Chest

Tumor

Skin

Standard Viewing Planes

Scrolling through slices

Registration of Holograms to Patient

1. Manual Registration

- Moving the head/camera position to align the holograms to the patient
- Selecting the markers and adjusting the rotation using gestures

2. Automatic Registration

- Integration of OpenCV for automatic recognition of the markers in patient
- Alignment of the MRI markers to the recognized optical markers

Automatic Registration - Tag Recognition

Step 1:

- 1. Find the contours in the video frame
- 2. Approximate the contours by a polygon
 - 1. Remove those with corners ≠ 4

Step 2:

For each 4 sided polygon

- 1. Remove the perspective
- 2. Divide the matrix based on the marker size (4×4) or (5×5)
- 3. Read the bits and match it to the input dictionary (orientation)

Step 3:

Given 2D image corners, 3D object corners Output position, rotation Example AR Tags

Phantom-MRI Registration

MRI

Iterative Closest Point Algorithm

Covariance Matrix

 $(Tag i' - center') \times (Tag i - center)^T$

Singular Value Decomposition

R (rotation) = UV^T t (translation) = center - R center'

Phantom

How well do we perceive the holograms?

If the user is asked to draw the hologram that they are visualizing

- is the shape preserved?
- dimension?

Perceptual Accuracy - Set up

Step 1: inter-pupillary distance measurement/ adjustment

Perceptual Accuracy - Set up

Step 2: Tag tracking and adjustment of the tag position

Perceptual Accuracy - Setup

Perceptual Accuracy

Image overlay of drawn shapes (green+white) and ground truth (magenta+white)

Perceptual Accuracy - Results

N=6 subjects

Dots	
Error in depth dimension (mean ± std. deviation)	-1.0 ± 3.5 [-6.1 7.1] mm
Error in right-left direction (mean ± std. deviation)	-0.2 ± 1.3 [-3.3 2.2] mm
Shapes	
Error in depth dimension (mean ± std. deviation)	-1.1±2.0 [-5.9 2.3] mm
Error in right-left direction (mean ± std. deviation)	0.1±1.2 [-2.2 3.0] mm
Margin Tolerance	[0.68 5.74] mm
Dice coefficient	[0.56 0.95]