MRI-GUIDED FOCUSED ULTRASOUND: APPLICATIONS FOR CANCER THERAPY

POOJA GAUR, PHD

KIM BUTTS PAULY LAB

RSL/SCIT SEMINAR JUNE 28, 2017

MRI-GUIDED FOCUSED ULTRASOUND SURGERY

- Ultrasound: targeted tissue heating (→ necrosis)
- MRI: visualize treatment (planning, monitoring)
- Less trauma to patient than invasive surgery

www.insightec.com

www.philips.com

MRI-GUIDED FOCUSED ULTRASOUND: ONCOLOGICAL APPLICATIONS

Bone metastases	
Prostate cancer*	
Breast cancer	
Kidney cancer	
Liver cancer	
Pancreatic cancer	
Soft tissue cancer	
Bone cancer	
Brain cancer	
Head & neck cancer	
Melanoma	
Thyroid cancer	
Cervical cancer	
Lung metastases	
Neuroblastoma, pediatric	
Bladder cancer	
Cancer pain	
Colorectal cancer	
Esophageal cancer	
Lung cancer	
	Outside US

Pivotal Trials

Approvals

Pre-clinical

Conceptual

FDA Approvals US Reimbursement

www.fusfoundation.org

3

MRI-GUIDED FOCUSED ULTRASOUND NEWS

• 2012, Oct	FDA Approves MRI-Guided Focused Ultrasound Ablation for Bone Metastasis Pain
• 2014, Mar	First noninvasive thermal ablation of a brain tumor with MR-guided focused ultrasound
• 2015, Oct	FDA Approves First Focused Ultrasound System for Treating the Prostate
• 2015, Nov	World first: blood-brain barrier opened non-invasively to deliver chemotherapy
• 2017, Apr	First Focused Ultrasound Pediatric Brain Tumor Study Begins
• 2017, Jun	Focused Ultrasound Foundation and Cancer Research Institute Partner to Advance Cancer Immunotherapy
	thermal ablation (tumor destruction)
	blood-brain barrier opening (chemotherapy)

THERMAL ABLATION AND BBB OPENING: HIGH/LOW INTENSITY FOCUSED ULTRASOUND

BLOOD BRAIN BARRIER (BBB) OPENING

Microbubbles injected into the blood and then vibrated by ultrasound can force apart the protective endothelial cells that line the blood vessels in the brain. This enables drugs targeting tumour cells to breach the blood-brain barrier

THERMAL ABLATION AND BBB OPENING: HIGH/LOW INTENSITY FOCUSED ULTRASOUND

Tumor volume

BBB opening with LIFU for adjuvant chemotherapy Non-invasive HIFU ablation

MRI-GUIDED FOCUSED ULTRASOUND: BRAIN

www.insightec.com

MRI temperature monitoring

Rieke et al., JMRI 2013

T1-weighted MRI

Before treatment

Micrograph of resected tumor shows coagulative necrosis (arrows)

Ram et al., Neurosurgery 2006

TUMOR ABLATION IN (NON-)BRAIN TISSUE

SKULL SHAPE, THICKNESS, COMPOSITION CAN DISTORT ULTRASOUND FOCUS

CORRECTING FOR SKULL DISTORTIONS IS AN ACTIVE AREA OF RESEARCH

- Simulation-based methods
 - Estimate ultrasound transmission based on CT images
- Imaging-based methods: MRI acoustic radiation force imaging (ARFI)
 - visualize focal spot via tissue displacement
 - adjust transducer phase delays to improve focal spot

MR-ARFI ENCODES TISSUE DISPLACEMENT FROM ULTRASOUND

Tissue displacement is measured by change in MR image phase

Chen et al., MRM 2010 12 Kaye et al., MRM 2013

VALIDATE FOCAL TARGETS BEFORE HEATING

Pre Calibration Post Calibration

CONFIRM ABLATION BY CHANGE IN TISSUE STIFFNESS

1.5 Pre Ablation 2 0.5 20 mm 20 mm 0 Post Ablation -0.5 -1 20 mm mm -1.5 mm

Displacement at three ablation sites

ADAPTIVE FOCUSING FOR IMPROVED CORRECTION THROUGH SKULL

TRANSCRANIAL MR-ARFI EXPERIMENT

Sheep skull (replica)

CT of skull cap Transducer

Phantom set-up

transducer sheep skull gel phantom

- water-filled cylinder

Top-down view

DISPLACEMENT MAPS

μm

DISPLACEMENT MAPS

μm

COMPARE MEASUREMENTS WITH SIMULATION MODEL RESULTS

SUMMARY

 MRI-guided focused ultrasound for tumor ablation, BBB opening

Challenges with treating through skull

- Focal spot measurements and simulations may
 - improve characterization of transcranial ultrasound
 - ultimately improve patient selection and treatment

Tumor volume

Non-invasive HIFU ablation

ACKNOWLEDGEMENTS

RADIOLOGICAL STANFORD MEDICINE

