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Background

■ Ovarian cancer is the leading cause of gynecologic-cancer associated mortality; 
most women have advanced disease (stage III) at diagnosis. 

■ Over the course of a lifetime, one in eight women develop breast cancer.

■ Ultrasound is a relatively inexpensive, non-invasive, and real-time imaging modality.

■ Traditional ultrasound is widely used to assess potential ovarian tumors; it is used in 

conjunction with mammography for breast lesions.

■ However, radiologists are often presented with lesions that represent a diagnostic 
dilemma.



Contrast Enhanced and 
Molecular Ultrasound

■ Dynamic contrast-enhanced ultrasound 
(CEUS) has recently emerged as a tool to aid in 
the characterization of lesions.

■ Imaging can be performed within minutes of 
administration of the molecular agent.

■ Microbubbles are predominantly cleared by 
the liver and spleen, rather than the kidneys.

■ Molecularly targeted microbubbles involve 
binding a ligand to the microbubble shell, 
causing them to accumulate where the ligand 
naturally binds.

Abou-Elkacem, 2015.



Selected prior experiences with 
molecular ultrasound

■ Ultrasound molecular imaging (USMI) has been used to study inflammatory bowel 
disease using targeted microbubbles designed to attach to P-selectins and E-selectins, 
allowing for quantification of inflammation in a porcine model of terminal ileitis (Wang, 
2013).

■ USMI has been used in a primate model of myocardial ischemia, in which selectin-
targeted myocardial contrast echocardiography showed a significant increase in signal 
within ischemic myocardium (Davidson, 2014).

■ The USMI agent BR55 was used to detect submillimeter foci of pancreatic cancer in a 
transgenic mouse model (Pysz, 2015).

■ Another study using USMI agent BR55 analyzed mice with human colon cancer 
xenografts and showed that molecular imaging signal decreased by 57% after 
antiangiogenic treatment compared to the control group (Want, 2015).



Molecular Agent BR55

■ VEGF is a signaling protein related to 
angiogenesis; it is highly expressed in the lumen 

of endothelial cells in multiple cancer types.

■ BR55 is a VEGF-targeted molecular contrast 
agent that specifically targets the kinase domain 
receptor (KDR).

■ Strong molecular ultrasound imaging signal 

persists for much longer than it does for CEUS, 
due to the molecular agent continuing to bind to 
its receptor.

Willmann, 2017.



Clinical Trial Data

■ The first-in-human clinical trail of ultrasound molecular imaging in breast and 
ovarian cancer patients was spearheaded by Dr. Willmann and performed using 

clinical-grade contrast agent BR55.

■ 24 women with ovarian lesions and 21 women with breast lesions were enrolled in 
the trial.

■ Pathological outcomes were obtained, including whether the lesion was benign or 
malignant and KDR expression.

■ Experienced radiologists qualitatively assessed the presence of molecular 

ultrasound imaging signal, defined as focal enhancement visible after freely 
circulating microbubbles had disappeared.



Imaging Sequence

Image First 45 

Seconds

Time 1

Initial Arrival of 

Contrast Agent.

Clip at 

5 min

Clip at 

7 min

Clip at 

9 min

Time 2 Time 3 Time 4

Persistent binding of the 

molecular agent should represent 

true molecular imaging signal after 

the disappearance of freely 

circulating microbubbles.

Clip at 

27 min

Clip at 

29 min

Time 13 Time 14

Final timepoint.



Data Analysis Methods: Analyzing US 
Molecular Imaging Signal

■ Label the timepoint for each DICOM series for each patient. Import the 
segmentation of the region of interest (ROI) into Matlab as well as the DICOM data 
for each timepoint.

■ Focus on the texture of the lesion at later timepoints, when all freely circulating 
microbubbles have cleared. Take a single-frame snapshot of the lesion within the 
ROI in the middle of this timepoint, as well as the average of a small time of frames.

■ Extract texture features (i.e. Haralick texture features). Standardize features and 
perform principal components analysis. Use support vector machines for 
classification, and validate using leave-one-out cross validation to obtain a score for 
each patient.

■ Use scores to generate receiver operating characteristic (ROC) curves.



Texture Analysis

■ A gray-level co-occurrence matrix (GLCM) examines the spatial relationships 
between pixels by calculating how often pairs of pixels with specific gray level values 

occur at specified spatial relationships (Haralick, 1973); this procedure creates a 
gray level co-occurrence matrix.

■ Haralick then described statistics that could be calculated from the co-occurrence 
matrix, (contrast, homogeneity, entropy, energy, correlation, variance, etc.)

■ We also performed initial analyses using other texture analysis techniques, including 

gray level histograms, Haar wavelets, and Canny edge detection. While those did not 
perform as well as the GLCM in our initial tests, we will analyze more techniques in 
the future (e.g. Reisz wavelets).

Haleem, 2015



Scores from SVM at different times vs. Pathology.
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Comparison of scores from SVM at the 13 minute timepoint.
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Comparison of scores from SVM at the 15 minute timepoint.
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Comparison of scores from SVM at the 17 minute timepoint.
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Comparison of scores from SVM at the 19 minute timepoint.
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Comparison of scores from SVM at the 21 minute timepoint.

Note: leave-one-out 

cross validation was 

used to generate 

scores.



Example ROC curves at 13 minutes and 
21 minutes.
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ROC area under the curve of 0.95 for the Ovary dataset using 15 components

The Individual frame value during the 13 minute timepoint was passsed into machine learning.
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Experiment was repeated averaging 10 
frames within each timepoint.

Hypothesis:

Averaging frames should lower 

performance, as texture will not be as 

reliably captured due to motion, which will 

affect the performance of the GLCM, which 

looks at relationships between gray values.

Time: 13 min 15 min 17 min 19 min 21 min Avg.

Individual Frame 0.95 0.87 1.00 0.85 0.89 0.91

Average 10 frames 0.88 0.67 0.84 0.70 0.89 0.80



Data Analysis Methods: Perfusion 
Parameters

■ Label data and import into Matlab.

■ Generate time-intensity curves and parametric maps.

■ For time-intensity curves, analyze the first time-point separately, as well as the entire 
30 minute duration. Analyze individual values of PE/AUC/TTP within an ROI as well 
as their combination. Using logistic regression with the pathologic outcome (benign 
vs. malignant) as the response variable, obtain scores for each patient.

■ For parametric maps, extract texture features (i.e. Haralick texture features).
Standardize features and perform principal components analysis. Use support 
vector machines for classification, and validate using leave-one-out cross validation 
to obtain a score for each patient.

■ Use scores to generate receiver operating characteristic (ROC) curves.



Examples: Comparison of time-intensity 
curves in the ROI over the first 45 seconds.

Sometimes curves very clearly 

separate in the first time point.

Other times not so much.



Results for the Ovary dataset using the mean value of PE, AUC, 
& TTP in the ROI over the first 45 seconds to predict pathology.

Parameter ROC AUC

PE 0.58

AUC 0.53

TTP 0.72

Fusion 0.86
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Comparison of scores when all variables are used in model.



Results for the Ovary dataset using the mean value of PE, AUC, 
& TTP in the ROI over the first 45 seconds to predict pathology.
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Example: It is also possible to look at time intensity 
curves in designated ROIs over the entire 30 minutes 
of imaging.



Results for the Ovary dataset using the mean of PE, AUC, & 
TTP in the ROI over the entire 30 minutes to predict pathology, 
without a boundary condition for TTP.

Parameter 30 min AUC

PE 0.57

AUC 0.55

TTP 0.47

Fusion 0.65
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Keep in mind that the second time-point starts at 5 minutes (300 seconds). Hence, 

due to the discontinuous nature of the data, if the peak happens after the first 45 

seconds, there is significant error in the estimation of time-to-peak.



Results for Ovary dataset using mean of PE, AUC, & TTP in the ROI 
over the entire 30 minutes to predict pathology, using a boundary 
condition for TTP (<100 sec) due to discontinuous data collection.

Parameter 30 min AUC First 45 sec

PE 0.69 0.58

AUC 0.55 0.53

TTP 0.84 0.72

Fusion 0.89 0.86
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Using interpolated curves yields similar 

performance. 



Results for Ovary dataset using mean of PE, AUC, & TTP in the ROI 
over the entire 30 minutes to predict pathology, using a boundary 
condition for TTP (<100 sec) due to discontinuous data collection.

Parameter 30 min AUC First 45 sec

PE 0.69 0.58

AUC 0.55 0.53

TTP 0.84 0.72

Fusion 0.89 0.86

Using interpolated curves yields similar 

performance. 
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Example parametric maps from the first 
45 seconds in Ovary Dataset 

PE AUC TTP

Parametric maps are analyzed within designated Region of Interest. 



ROC for the first 45 seconds using parametric maps on 
the Ovary dataset to predict pathology.

Parameter AUC

PE 0.99

AUC 0.85

TTP 0.82

Fusion 0.97
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Score Vs. Pathology or VEGFR2 Staining 
in Ovary Dataset
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Using support vector machines to predict the binary pathology outcome 

results in a score. However, the score can also be stratified by the level 

of KDR expression on immunohistochemistry (low, medium, high). 
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Sensitivity Analysis: ~15 principal 
components was ideal.
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Sensitivity Analysis, Showing Performance of Variable 
Models on the Ovary dataset as Function of Start Time
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Sensitivity Analysis with PE
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Sensitivity Analysis with AUC
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Sensitivity Analysis with TTP
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Sensitivity Analysis with Fusion

• Overall, the models do not perform as 

well when the first start time (initial 

45 seconds) is omitted (compare to 

performance on previous slide).

• This makes sense: analyzing 

perfusion parameters after the initial 

bolus has peaked would not be 

expected to perform as well.

• This is in contrast to looking at the 

texture of the lesion at the later time-

point, essentially analyzing the pattern 

of molecular imaging signal, which 

performs much better.



Results for the Breast dataset using the mean value of PE, AUC, & TTP 
in the ROI over the first 45 seconds to predict pathology.

Parameter ROC AUC

PE 0.76

AUC 0.69

TTP 0.79

Fusion 0.79
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Results for Breast dataset using mean of PE, AUC, & TTP in the 
ROI over the entire 30 minutes to predict pathology.

Parameter 30 min AUC First 45 sec

PE 0.75 0.76

AUC 0.58 0.69

TTP 0.81 0.79

Fusion 0.82 0.79
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ROC for the first 45 seconds using 
parametric maps on the Breast dataset.

Parameter AUC

PE 0.81

AUC 0.51

TTP 0.73

Fusion 0.87
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Score Vs. Pathology or VEGFR2 Staining 
in Breast Dataset
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Next Steps

■ Generate ”texture-intensity” curves, which show 
how textural features vary over time. Discretize 

the values from these curves and use them as a 
feature vector for machine learning.
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Next Steps

■ Divide the entire image into small sub-
regions.

■ During training, within each sub-region, 
generate time-intensity curve or texture-
intensity curve and get feature vector.

■ Use known tumor ROI for classification.

■ When a new image is presented, use the 
time or texture-intensity curve to predict 
whether each individual sub-region 
represents either tumor or normal tissue.

■ If this works well, it can be used to 
predict areas of tumor in new images or 
provide an “auto-segmentation” of sorts. 

Known 

Tumor 

ROI Normal

Tissue

Training

Actual

Tumor

Test

Predict

Tumor

[0, 0.1, 1, 2, 1, 0.1, 0]

Feature Vector

For each 

sub-region:



Future Directions

■ It will be important to validate our results on a larger dataset.

■ A clinical trail will soon begin in which 60 patients with suspicion for ovarian cancer will undergo 
imaging with BR55.

– Based on our clinical experience at Stanford, 50% will have ovarian cancer and the other will 
be mostly benign lesions. 

■ Clinical outcomes collected as part of this trial include pathological diagnosis, 
immunohistochemistry to characterize VEGFR2 and CD-34 expression (including pathological 
scores to quantify endothelial VEGF expression), and a measure of microvessel density.

– Overall, this is a much richer and more quantifiable response variable

■ In addition, 50 patients with familial risk for ovarian cancer undergoing risk-reducing salpingo-
oophorectomy will also be imaged with BR55.

■ Trials will also begin to image other organs with BR55 (pancreas), and these techniques could also 
be applied to that cohort.



Conclusions

■ At the later time points (i.e. 13, 15 minutes, etc), the signal remaining in the lesions should represent 
true molecular imaging signal. Using the texture from the lesion at these later time points, it is possible 
to successfully predict pathology with a high level of accuracy in this dataset.

■ During the first 45 seconds of imaging, classic parameters from perfusion curves also have predictive 
ability in this dataset. 

– Using the parametric maps derived from these parameters performs performs somewhat better.

– If the whole time period (entire half hour) is used instead, then performance can be hampered if 
the true contrast peak did not occur in the first timepoint due to discontinuous data collection.  If 
these outliers are accounted for, performance is similar compared to the first time point alone.

■ Nevertheless, it will be crucial to validate these techniques on a larger molecular imaging dataset.



Other Projects

■ Using shear-wave elastography to predict RCC vs. AML within a renal dataset.

– Using a combination of statistical features both within the lesion and outside the 
lesion (medulla, cortex) demonstrated higher performance in predicting pathology. 
Machine learning approaches outperformed the use of median shear wave velocity 
within the lesion.

■ Using deep learning with 3D convolutional neural networks on 5.5k CT head images and 
reports in order to predict a number of clinical outcomes (hemorrhage, hydrocephalus, 
herniation, CVA, mass).

– Will compare the performance of “weak labels” derived from the original reports 
using Snorkel (a Stanford CS-developed tool) compared to radiologist-derived 
manual labels.

■ Using a 1000 patient, well-curated breast MRI database at Stanford, take advantage of 
the DCE-MRI curve to predict various pathological and follow-up outcomes with machine 
learning.
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