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q Identifying the Value of a Dedicated Radiofrequency (RF) Penetrable Brain PET insert: 
What can this Brain PET insert offer patients and clinics?

q First Generation Radiofrequency Penetrable Brain PET Insert for MRI: How is our 
system designed and how do we acquire data?

q Comparative PET Spatial Resolution Performance: Contextualizing our Brain PET Insert 
Spatial Resolution against current clinical systems

q Hoffman Phantom Scans: Can we anticipate the performance of our PET system when 
applying the system to patients?

q Initial Hoffman Phantom Images: Initial Hoffman phantom images contextualized for 
clinical translation

q Comparative Hoffman Images: Dedicated Brain PET Insert versus GE Signa

q Future Work: Improving image quality and experimental sequencing
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Combined PET/MRI – Benefits/Limits and Costs
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Figure 1: Comparative imaging study of PET/CT
versus PET/MRI on low grade glioma. [1]

[1] Boss, Andreas, SotiriosBisdas, ArminKolb,MatthiasHofmann,UlrikeErnemann, ClausD. Claussen, ChristinaPfannenberg, BerndJ. Pichler,MatthiasReimold, andLars
Stegger. "HybridPET/MRI of intracranialmasses: initial experiencesandcomparisontoPET/CT." Journal ofNuclearMedicine51, no. 8 (2010): 1198-120

q PET as a modality: PET provides (a) biodistribution
information, (b) excellent depth of penetration, (b)
high intrinsic sensitivity (picomolar order)

q MRI as a modality: MRI provides (a) anatomical
information, and (b) excellent soft tissue

Individual Modalities

q PET/MRI versus PET/CT: Anatomically slow, excellent contrast, no anatomical radiation
emerging attenuation correction (AC) for PET versus anatomically fast, poor contrast,
additional dose, and PET AC capable

q PET/MRI Specific Benefits in Brain: PET function can be easily localized to sub-brain 
anatomical features using MRI

q Economics of PET Insert versus Full PET/MRI Setup: Easily incorporated in to pre-
existing MRI versus full infrastructure development

Individual Modality Strength
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Radiofrequency Penetrable Brain Dedicated PET System
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[2] Chang, Chen-Ming, AlexanderM.Grant, BrianJ. Lee, EalgooKim, KeyJoHong, andCraigS. Levin. "Performancecharacterizationof compressedsensingpositron
emissiontomographydetectorsanddataacquisitionsystem."Physics inMedicine&Biology60, no. 16(2015): 6407.

Detector Module Design and RF Shielding

Compressed Sensing Readout

q Detector Module Design: 3.2 x 3.2 x 20
mm3 LYSO crystal elements 1-1 coupled
to arrays of silicon photomultipliers
(SiPM) with a total of 128 crystals

q Compressed Sensing: Front end
electronics reduce 128 pixels to 16
rather than using 1:1 pixel to channel
ratio

q Event Information: 16 channel yield
energy, timing, and spatial position of
each event

Figure 2: (A) Detector Module with LYSO crystals. (B) Shielding detector module
held at floating voltage

Figure 3: Compressed sensing channel reduction method. Patterns describe
energy, timing, and spatial positioning
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Radiofrequency Penetrable Brain Dedicated PET System
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PET System Assembly and System DAQ

q BrainPET System General Geometry: 16
modules form a 32-cm I.D. and 40-cm
O.D. which can be inserted into a 3T MR
system

q Active Field of View: 128 crystals from a
3 cmaxial FOV for this prototype system

Figure 4: (A) 16 module detector ring (B) System DAQ with 256 optical channels

Figure 5: Phased array coil insert used for receiving data

RF Compatibility and Sensing

q RF Penetrability: System is electrically
floating and detector modules are
separated by 1mm

q Receiver Coil: Attenuation is limited to
one direction as a body coil/phased array
coil combination is employed
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PET Data Processing

Slide 6

Data Acquisition Method and Processing – Parallel 
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q Brain PET Header Information
q Source port – (DAQ System) – FPGA Firmware Coded: “192.168.1.1”
q Destination Port – (PC) – BrainPET Hardcoded: “192.168.1.2”

q Modified Brain PET Header Information for Parallel Processing
q Source port – (DAQ System) – FPGA Firmware Coded: “192.168.1.1”
q Destination Port – (PC) – BrainPET User Defined: “X.X.X.X”

10 Parameter 
Listmode

“Energy Window + Time 
Window + Corrections”

“Reconstruction”
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System Spatial Resolution – BrainPET versus GE Signa
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Resolution Phantom Layout and Design

Figure 6: (A) Sketch of custom 3D printed phantom. (B) Actual 3D phantom.

(A) (B) q Custom Resolution Phantom: 3D-
printed phantom for spatial
resolution [3]

q Hot Rod Dimensions: 5.2 mm, 4.2
mm, 3.2mm, and 2.8mm

q Cold Rod Dimensions: 4.2mm

Resolution Phantom Experimental Parameters
q BrainPET Acquisition Parameters: 300 μCi and scanned for 45 minutes.

Reconstructionwas performedwith our OSEMwith voxel sizes of 1 x 1 x 1mm3

q GE Signa Acquisition Parameters: 500 μCi and scanned for 30minutes. Reconstruction
was performed with the native OSEM algorithm provided by the system with voxel
sizes of 1.17 x 1.17 x 2.78mm3

[3] Bieniosek, Matthew F., Brian J. Lee, and Craig S. Levin. "Characterization of custom 3D printed multimodality imaging phantoms." Medical 
physics 42, no. 10 (2015): 5913-5918.
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System Spatial Resolution – BrainPET versus GE Signa
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Prototype brain-sized PET insert

GE Signa whole-body PET/MR

Comparative Resolution Phantom Results – BrainPET Versus GE

Figure 7: (A1) Reconstructed spatial resolution phantom. (A2) 2.8 mm rod cross-section profile. (B1) GE Signa reconstructed resolution phantom. (B2) 2.8 mm rod
cross-section profile

(A2)

(B2)

(A1)

(B1)
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Hoffman Brain Phantom
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[4] Beekman, F. J., C. Kamphuis, M. A. King, P. P. VanRijk, andM. A. Viergever. "Improvement of image resolution and quantitative accuracy in
clinical singlephotonemissioncomputed tomography." ComputerizedMedical ImagingandGraphics25, no. 2 (2001): 135-146.

Hoffman Brain Phantom Reference Images

Figure 8: Digital Hoffman brain phantom. Targeted features of first [4]

q Hoffman Phantom: Designed to simulated blood flow and metabolism with 4:1 
uptake between grey and white matter.

q High Resolution System: Anticipation of improved axial midbrain (highlighted RED 
box) resolution provided by PET insert (2.8 mm vs. >4 mm)
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Hoffman Brain Phantom
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Hoffman Phantom Acquisition from Saturation –
Coincidence Events Per Second

(A)

(B)

Figure 9: (A,B) Hoffman phantom setup. (C) Initial Hoffman saturation curve intended to
describe absolute system limitations.

Hoffman Phantom System 
Orientation

(C)

System 
Saturation
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Hoffman Brain Phantom
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Hoffman Phantom Scan with Fully Integrated 
Counts (Non-Clinical Condition) versus GE Signa

(A)

(B)

Hoffman Phantom System 
Orientation

q BrainPET Acquisition Parameters: 10 mCi initial
activity, 9 hrs imaging (1 hr coincidence/10
minute randoms), 2 mm x 2 mm x 2 mm voxels

q GE Signa Phantom Data: Provided by GE with 
3.125 mm x 3.125 mm x 2.78 mm voxels

Figure 10: (A,B) Hoffman phantom setup. (C) BrainPET fully time integrated image. (D) GE
Provided brain phantom.

Hoffman Experiment Parameters

Hoffman Images Removed
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Hoffman Brain Phantom Continuation
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q Hoffman Phantom Acquisition: Manual acquisition of 10 minute intervals of
coincidence data in sequences of 6 followed by single randomcoincidence acquisition

q Normalization Data:Manual acquisition of 10 minute intervals of coincidence data in
sequences of 6 followed by single randomcoincidence acquisition

Figure 10: (A) Hoffman Brain Phantom Coincidence measurement versus activity with coincidence events and random coincidence data (B)
Normalization measurement versus activity with coincidence events and random coincidence data

(A) (B)
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Hoffman Phantom Images by Hour of Acquisition

Slide 13

Hoffman Brain Phantom Images (3 – 5)

Hoffman Brain Phantom Images (6 – 8)

Reference

GE Signa

Hoffman Images Removed

Hoffman Images Removed
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Post-Processing Image Improvements

q Clinic Application Potential: Without image corrections, 1 Hr (or slighty longer) 
studies for clinical translation are reasonably the lower limit of acquisition time

q GE Signa versus BrainPET: Our system lacks proper AC, randoms correction, and 
Monte-Carlo based scatter correction contributing to the discrepancy in image

Future Work

q Normalization: Switching between normalization cylinder and a normalization ring

q Randoms Correction: Normalization and Hoffman phantom random data available but 
needs to be applied

q GRAY Monte Carlo based scatter correction: Using in house simulation software to 
remove scatter in 410 keV to 610 keV range

q Quantification: Use image quality metrics to precisely describe performance (e.g. 
CNR)
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