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Background
• Liver cirrhosis a dire worldwide public health concern

• > 1 million annual deaths.
• Common causes:

• Hepatitis B/C
• Nonalcoholic fatty liver disease
• Alcoholic liver disease
• Autoimmune liver disease. 

• Varying degrees of fibrosis (liver stiffness) can progress to cirrhosis. 
• If hepatic fibrosis is detected early and its cause identified, it can be 

stabilized/reversed using anti-viral, anti-fibrotic, or anti-
inflammatory drugs. 

• Quantitative assessment of hepatic fibrosis could be used to guide 
treatment choice/assess treatment response.



Methods of Evaluation
• Liver biopsy was the traditional method for assessing hepatic 

fibrosis, using the METAVIR histopathologic grading system.
• However, liver biopsy is invasive, with risks including bleeding 

and infection.
• Biopsy can also be prone to under-sampling or inter-observer 

differences in interpretation using METAVIR among pathologists.
• While magnetic resonance elastography (MRE) is also considered 

a gold standard examination for assessing liver fibrosis, it is 
expensive and not an option for many at risk for cirrhosis 
worldwide. 



Ultrasound Elastography
• Ultrasound elastography non-invasively measures tissue stiffness.
• There can be differences in the elasticity of soft tissues due to 

pathological or physiological processes. 
• Fibrosis in the setting of chronic liver diseases reduces the 

elasticity of the liver relative to normal tissues due to collagen 
deposition and microstructural changes.

• Recent studies have shown the ability of ultrasound elastography 
to differentiate malignant from benign focal liver lesions with 97% 
sensitivity and 66% specificity .

• Elastography can help in differentiating diseased from normal 
tissue and assist in diagnosis by providing additional information 
to conventional ultrasound. 



Ultrasound Elastography
• There are some limitations of ultrasound elastography:

• Normal physiologic processes and disease states (passive 
hepatic congestion in cardiac insufficiency, cholestasis, and 
hepatic steatosis) can confound elastography measurements.

• Due to current limitations in distinguishing between 
individual fibrosis stages, the World Federation for Ultrasound 
in Medicine and Biology guidelines recommend ultrasound 
elastography to be used to distinguish significant or advanced 
fibrosis from non-significant fibrosis. 

• The Society of Radiologists in Ultrasound recommend using 
elastography to discriminate no or minimal fibrosis from 
severe fibrosis or cirrhosis. 



Current Dataset
• 3,637 patients who underwent 

point shear wave elastography 
with a Siemens Acuson S2000 
ultrasound scanner.

• Involves getting shear wave 
velocity measurements from 10 
regions of interest (ROIs), 
represented by boxes.

• Boxes are placed on the original 
grayscale image, and shear wave 
velocity is calculated 10 times.



Grading the Degree of Fibrosis
• The median shear wave velocity is used to grade the degree of 

fibrosis into four bins: F0/F1, F2, F3, F4.
• F0/F1 vs. F2-F4 represents the cut-off for “clinically significant 

fibrosis.”

Reference values for liver fibrosis:
F0/F1: For velocities ≤ 1.34 m/s
F2: For velocities > 1.34 m/s
F3: For velocities > 1.55 m/s
F4: For velocities > 1.8 m/s
(Friedrich-Rust, 2012)



Patient Population
Variable Distribution*

Sex 1923 (M), 1714 (F)

Age 55.2 ± 14.2 (µ ± σ)
BMI 25.9 ± 5.5 (µ ± σ)
Cirrhotic 751 (Y), 2827 (N), 59 (n/a)

Ascites 135 (Y), 3443 (N), 59 (n/a)

Steatosis 828 (Y), 2750 (N), 59 (n/a)
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Primary Indication n
'Abnormal Liver Function 
Studies' 170
'Alcohol Abuse' 43
'Alcoholic Cirrhosis' 82
'Autoimmune Hepatitis' 63
'Cardiac Cirrhosis' 54
'Cryptogenic Cirrhosis' 44
'Cystic Fibrosis' 5
'Hemochromatosis' 13
'Hepatitis B' 1656
'Hepatitis C' 1105
'Morbus Wilson' 5
'NAFLD' 139
'NASH' 83
'PBC' 78
'PSC' 8
'n/a' 22



Longitudinal Information

Repetition of pSWE Examinations
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•~800 patients have 
longitudinal studies, 
with 10 measurements 
of pSWE for each 
study.



Additional Data Collected from EMR
• Used Stanford Research Informatics to get additional information.
• This includes key lab values (with dates obtained):

• AST
ALT

• Alkaline Phosphatase
• WBC

• Also, extracted treatment with antiviral drugs (also with dates):
• These are the treatment for hepatitis B & C.



Project 1:
Elastography Pathology Prediction
• Study purpose: To determine if shear wave velocity 

measurements from point shear wave elastography can predict 
biopsy-determined fibrosis grade using machine learning 
techniques. 



Study Design
• Pathology is uncommonly performed because of its invasiveness.
• Used Stanford Research Informatics to find all the liver pathology 

reports of patients who underwent shear wave elastography in 
this dataset.

• A total of 73 examinations for 61 patients had liver biopsy within 
six months of the ultrasound elastography examination.

• Clinically significant fibrosis, as determined by pathology, was the 
ground truth for this study, essentially a binary outcome.
• This bins together clinically nonsignificant fibrosis (F0/F1) and 

clinically significant fibrosis (F2-F4), similar to what is done 
clinically.



Machine Learning
• Using the ten measurements of shear wave velocity as inputs, 

four machine learning algorithms—AdaBoost, support vector 
machine (using the Gaussian radial basis function), a multilayer 
perceptron (10 layers), and k-nearest neighbors (k=3)–were 
evaluated in their ability to distinguish clinically significant and 
non-significant fibrosis, as determined by biopsy.

• Validated using two-fold cross-validation.



Statistical Analysis
• The Matlab predict function was applied to validation data to 

obtain scores representing the probability that the predicted class 
was correct.

• The Matlab perfcurve function used the scores and pathology 
outcomes to calculate sensitivity, specificity, positive and negative 
predictive value, accuracy, and ROC area-under-the-curve.

• Scores between the two classes were compared with a Wilcoxon 
rank-sum test. 



Results
Algorithm Sensitivity Specificity NPV PPV Accuracy AUC p-value

AdaBoost 82.4 91.3 70 95.5 85.1 0.93 7.0 x 10-10

Support 
Vector 

Machine 84.3 91.3 72.4 95.6 86.5 0.93 2.2 x 10-10

Multi-Layer 
Perceptron 62.7 90.9 51.3 94.1 71.2 0.81 1.5 x 10-6

K Nearest 
Neighbors 54.9 95.7 48.9 96.5 67.6 0.78 4.3 x 10-5

Performance of the different machine learning algorithms, using ten 
measurements of shear wave velocity from hepatic point shear wave 
elastography to classify between clinically-significant and non-significant fibrosis.



Conclusions
• Shear wave velocity measurements from hepatic point 

shear wave elastography used as inputs to machine 
learning correlate well with biopsy-determined fibrosis 
grade. AdaBoost and SVM performed best. 

• Machine learning can successfully be used to predict 
biopsy-determined fibrosis grade from point shear wave 
elastography measurements. 



Project 2: Fat Quantification
• Study purpose: To determine if there is a relationship between 

shear wave velocity measurements using ultrasound point shear 
wave elastography and fat quantification derived from MRI using 
machine learning (ML).



Fat Quantification
• 186 examinations from 113 patients had results from both point 

shear wave elastography from a Siemens ultrasound scanner and 
fat quantification from MRI. 

• Fat quantification values were quantized into intervals of 5%, and 
a multi-model support vector machine (SVM) algorithm with the 
Gaussian radial basis function kernel was run with ten 
measurements of shear wave velocity as inputs. 

• For each fat quantification interval, a dedicated SVM model was 
trained, and machine-learning based fat prediction was 
determined by fusing the results from all models.

• Intervals of 5% were chosen since the standard steatosis 
threshold clinically is 5%. 



Fat Quantification
• Results were validated using leave-one-out cross-validation.
• Next, for each quantization interval, the p-value for the fat 

prediction, as determined by the SVM, was calculated using a 
Wilcoxon rank-sum test.

• Finally, the correlation between predicted and actual fat 
quantification was done via Pearson correlation.
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p-value Number of 
samples

0-5 2.05E-38 108
5-10 2.10E-10 44

10-15 2.34E-07 12
15-20 1.43E-10 13
20-25 Insufficient Data 3
25-30 Insufficient Data 1

30+ 1.52E-05 5

A) Pearson correlation between MR-determined 
fat quantification and predicted fat quantification 
using machine learning. B) Strength of 
predictions at each fat quantification interval as 
determined by the Wilcoxon rank-sum test. 
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Results Summary
• There was high correlation between predicted fat quantification interval 

from ML and MRI-based fat quantification interval (r = 0.98).
• For this dataset, the dynamic range for MRI-based fat percent was between 

0% and 35%; however, five SVM models had enough data samples to be 
trained.

• There was good score separation in intervals under 20% (p < 10-9), whereas 
intervals greater than 20% had insufficient samples in our dataset. 

• Finally, for each ultrasound examination (sample index), a predicted fat 
quantification interval could be determined.



Conclusion
• ML with data from ultrasound point shear elastography correlates 

well with MRI-determined fat quantification levels.
• Additional investigation and training with a bigger dataset are 

necessary to further validate the robustness of this approach. In 
addition, a future study could add more data to the model (hepatic 
echogenicity, RF data).



Project 3a: Standardizing Data from Different 
Vendors
• Different vendors use different technologies to grade hepatic fibrosis. Major 

clinical problem, because validated cut-off values for different fibrosis grades are 
only established for some technologies.

• Is it possible to standardize hepatic fibrosis grading via technologies from 
different vendors using MR elastography as the gold standard?

• Study Population:
� 123 patients undergoing point shear wave elastography (pSWE) using a 

Siemens S2000 scanner and MRE.
� 60 patients undergoing 2D shear wave elastography (Philips Epiq7) and MRE.

• Comparisons: Median shear wave velocity (current standard) and 4 ML 
algorithms: support vector machine, logistic regression, naïve Bayes, quadratic 
discriminant analysis.

• Validation: 2-fold CV.



Different Technologies

Point shear wave elastography (Siemens) 2D shear wave elastography (Philips)



Overall Framework



Results

Point shear wave elastography (Siemens)
Median Shear Wave AUC = 0.76
SVM AUC = 0.96

2D shear wave elastography (Philips)
Median Shear Wave AUC = 0.84
SVM AUC = 0.99



Project 3b: Standardizing grading against 
another validated technology 
• Transient elastography (TE) is the oldest and most highly validated ultrasound 

elastography technique.
• Widely performed in Europe.
• TE: Dynamic stress is generated by a mechanical device. No grayscale image is 

created.
• Comparatively newer technique: point shear wave elastography (pSWE).
• pSWE: An acoustic radiation force impulse is used to generate transverse shear waves 

at a single focal zone. The speed of these shear waves is related to liver stiffness.
• Advantages:

• Uses grayscale images to select uniform hepatic tissue (avoids vessels/bile ducts).
• Less sensitive to ascites and obesity.

• TE is an acceptable reference standard:
• Accepted as a reliable substitute for liver biopsy, which itself demonstrates intra-

and inter-observer variability and is invasive.
• Purpose: To use machine learning to improve the measurements from pSWE using 

TE as the gold standard.



Methods
• 308 patients with chronic hepatitis C in Italy.

• Imaged using pSWE (acoustic radiation force impulse quantification) with a Philips ElastPQ
ultrasound scanner and TE with Fibroscan on same day.

• pSWE: 10 measurements of shear wave velocity were obtained.

• TE: Median value of 10 acquisitions was obtained and used as the reference standard with the 
cutoff of  7 kPa for clinically significant fibrosis (stage F2).

• Similar ML algorithms and validation as in 3a.

• The significance of the difference in AUC between each technique was evaluated using the 
DeLong method.



Demographics
Category Value

Gender 182 male, 126 female

Age (mean, SD) 55.7 ± 14.7 years

BMI (mean, SD) 23.6 ± 3.8 kg/m2

AST (median, IQR) 36 (23-58) U/L

ALT (median, IQR) 40 (22-70) U/L

GGT (median, IQR) 40 (24-81) U/L

ALP (median, IQR) 72 (61-89) U/L

Fibrosis 
Grade

Number

F0-F1 160

F2 45

F3 16

F4 87

Demographics

Fibrosis Grade Determined by 
Transient Elastography
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Support Vector Machine
Generalized Linear Regression Model
Naive Bayes
Discriminant Analysis
Median-SW

Algorithm Type SENS SPEC NPV PPV ACC ROC 
AUC P-VAL

Linear 
Regression 80.4 98.8 84.5 98.4 89.9 0.962 1.49 

E-44
Support Vector 
Machine 80.4 100 84.7 100 90.6 0.987 6.92 

E-50

Naïve Bayes 80.4 98.8 84.5 98.4 89.9 0.951 9.39 
E-44

Quadratic 
Discriminant 
Analysis

80.4 98.8 84.5 98.4 89.9 0.951 9.30 
E-44

Median Shear 
Wave Velocity 80.3 96.9 84.2 95.9 88.9 0.943 4.77 

E-41

Performance of four algorithms using ten measurements of shear wave 
velocity from point shear wave elastography as inputs and a cutoff of 
7 kPa for significant fibrosis via transient elastography serving as 
the reference standard. Performance was compared with that of simply 
taking the median of the ten velocity measurements from point shear 
wave elastography as the input.



Model Comparison
Combination P-value Significantly Different

SVM vs. Median SWV 6.86 E-4 Yes

SVM vs. QDA 4.29 E-4 Yes

SVM vs. Logistic Regression 6.24 E-3 Yes

SVM vs. Naïve Bayes 2.14 E-3 Yes

Logistic Regression vs. Median 
SWV

9.69 E-3 Yes

Logistic Regression vs. Naïve 
Bayes

0.0808 No

Logistic Regression vs. QDA 0.304 No

QDA vs. Median SWV 0.323 No

Naïve Bayes vs. Median SWV 0.252 No

Naïve Bayes vs. QDA 0.867 No

Comparison of AUC values for each combination of techniques using the DeLong method.



Discussion
• Shear wave velocity measurements using point shear wave 
elastography, a newer technology with key advantages, are 
consistent with the determination of fibrosis using the 
established TE method.

• Machine learning adds value by improving the sensitivity 
and specificity for fibrosis staging.

• Validation in a larger dataset is warranted.



Project 4: Deep Learning (in progress)
• Despite the ubiquity of clinical ultrasound, not all machines have 

shear wave elastography available, and doing the multiple 
measurements required for shear wave elasatography can be 
time-consuming.

• Traditional B-mode ultrasound is inexpensive, portable, real-time, 
and nearly ubiquitous worldwide. 

• While radiologists can sometimes diagnose hepatic fibrosis by 
subjectively observing “coarsening of the hepatic echotexture,” 
this is not quantitative.



Deep Learning: Background
• While common at Stanford, most centers do not routinely perform 

ultrasound elastography, as it requires specialized ultrasound 
scanners and trained ultrasound technologists and radiologists.

• Since hepatic fibrosis is a heterogenous disease, ultrasound 
elastography may be subject to sampling error.

• It would be ideal if it were possible to use the original B-mode 
images, obviating the need to select small regions of interest and 
overcoming the limitations of ultrasound elastography.

• With the recent revolution in using deep learning to classify 
medical images, can try using deep learning techniques on the 
original grayscale images from ultrasound elastography to 
accurately stage liver fibrosis. 



Deep Learning: Background
• The model will initially be trained and validated using clinically 

significant fibrosis as determined by ultrasound elastography.
• It will further be validated on a patient cohort that has a gold 

standard exam—MRE.
• Prior work used a much smaller dataset (279 vs 3,637) and did 

not have the clinical gold standard MRE for validation.
• This work could be highly impactful clinically, as it will enable 

rapid assessment of the liver using conventional B-mode 
ultrasound to automatically grade and longitudinally assess 
hepatic fibrosis, with accuracy comparable to MRE:
• This could drastically reducing screening costs and providing a 

strategy for deployment worldwide. 



Preliminary Results:
• Used Stanford Research IT to get the original DICOM images for 

3600+ ultrasound elastography exams performed using a Siemens 
Acuson S2000 scanner.

• Ultrasound images were de-identified using the Stanford CTP 
server.

• Initial Problem: For each exam, the complete abdomen was 
imaged, including many images (1000+) that were not relevant. 
Unfortunately, analysis of the DICOM metadata did not help.

• Solution: Used the tesserocr (v2.2.2) and pydicom (v.1.0.2) 
Python packages to develop code to correctly identify images of 
the liver using optical character recognition. This is able to 
identify both the relevant image of the liver, as well as the 
corresponding shear wave velocity measurement.



Experimental Design:
• Use a machine with the NVIDIA Titan Xp graphics processing unit, the CUDA 

parallel computing platform (v9.0), the CuDNN deep neural network library 
(v7.0.4), PyTorch (v0.40).

• Train as a binary classifier to determine clinically-significant fibrosis. 70% of 
the data will be set aside for training, and ten-fold cross-validation will be 
performed

• Select appropriate model architecture (e.g. DenseNet, ResNet-50) and fine-tune 
parameters affecting model fit, such as regularization and data augmentation. 

• Clinical variables (gender, BMI, medical diagnosis, and race) will be added to 
the model. Model success will be determined on the held-out test set with 30% 
of the data.

• We will also explore other model architectures and machine learning with pre-
defined features. 



Deep Learning Collaboration
• Have started a collaboration with China Medical University, which has 2000+ 

ultrasound images, 1000+ CT images, clinical variables, outcomes, and digital 
pathology slides. Currently, working on processing the IRB on our end.

• Additional Goals:
� Determine how well our model generalizes to the external dataset (and vice-versa).
� Add clinical data to the model to see if it improves performance.
� See how well CT images can predict fibrosis.
� Investigate whether imaging data can be correlated with digital pathology slides (rad-

path correlation).
� Evaluate whether ultrasound imaging combined with other data can predict clinical 

endpoints (development of HCC, survival).
� Write a grant with these questions in mind.
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