Breast dispersion imaging using undersampled DCE MRI

LINXI SHI, PH.D. MENTOR: BRIAN HARGREAVES, BRUCE DANIEL 02/14/2019

Introduction

Dynamic Contrast-enhanced (DCE) Breast MRI

0.5 × 1.2 × 2.0 mm 13 seconds 14 images 0.5 × 0.6 × 1.0 mm 120 seconds 4 images

The pattern of enhancement matters

Malignant tumors

- Signal intensity increased to 100% within the first 2 minutes¹.
- Aorta is enhanced within 11.5 seconds².
- Rapid uptake and washout of the contrast agent³.

Figure 5. (a) Axial three-dimensional FLASH images before, 30 seconds after, and every minute after intravenous injection of 0.1 mmol/kg of Gd-DTPA (same section position). (b) Percentage increase in signal intensity (0) after injection of 0.1 mol/kg Gd-DTPA in different breast tissues from those in a. $CA = \operatorname{carcinoma}$, $M = \operatorname{muscle}$, $P = \operatorname{normal}$ parenchyma, $F = \operatorname{fat}$.

¹Kaiser WA, Zeitler E. Radiology 1989; 170:681-686.
²Boetes C, Barentsz JO, Mus RD, et al. Radiology 1994;193:777-781.
³Kuhl, C.K., et al., Radiology, 1999. 211(1): p. 101-10.

Semi-quantitative analysis

- Compromises are made between spatial and temporal resolution.
- High spatial resolution imaging is increasingly being used.
- Three time-point acquisition
 - microvascular permeability (K)
 - extracellular fraction(v)
- ACR recommend
 - Spatial resolution: 1mm in-plane, 3 mm slice thickness
 - Temporal resolution: 120 s or less

Fig. 1 A typical example of the performance of the 3TP method in MCF7 human breast tumor implanted in nude mice. *a*, Image obtained by the 3TP method and the corresponding calibration map for contrast enhancement in mice using the three time points: 0, 5 and 16 min and the parameters summarized in Table 1. *b*, T₂ weighted image and calculated images of microvascular permeability (*K*) and of fraction of extracellular volume (v_1) obtained by fitting enhancement data of 20 time points using kinetic image analysis³.

Image Acquisition for quantitative analysis

Differential subsampling with Cartesian ordering (DISCO) DCE-MRI

Stanford University

M. Saranathan, et. al., *J. Magn. Reson. Imaging*, 2014. 40(6): p. 1392-1402

6

Quantitative Analysis: Pharmacokinetic model

- C_t (t) : Tissue Concentration(mMol/l)
- *C_p* (*t*): Plasma Concentration(mMol/l)
- K^{trans}: Transfer Constant(min⁻¹)
- k_{ep} : Flux rate (min⁻¹)
- *v_e* : Fractional volume of EES
- *v*_p : Fractional volume of plasma

$E = \frac{E + K^{trans}}{C \in \{1, t\}} = \frac{E + K^{trans}}{E = p} = \frac{E + K^{trans}}{V_e} = \frac{E + K^{trans}}{V_e}$

Tofts et al., JMRI 1999

Comprehensive 2CXM

AN TRANSIT TIME (MTT) IS CONSIDERED

 $C_{t}(t) = F_{p}C_{p}(t) * \left[Ae^{-\alpha t} + (1 - A)e^{-\beta t}\right];$ $k_{01} = A \cdot (\alpha - \beta) + \beta; k_{12} = \frac{\alpha\beta}{k_{01}}; k_{21}$ $= \alpha + \beta - k_{12}; v_{p} = F_{p}/k_{01}$ $PS = k_{21} \cdot v_{p}$ $MTT = v_{p}/(PS + F_{p})$

- F_p : plasma perfusion
- *PS* : permeability and surface area of the capillary walls
- *MTT* : the ratio of the volume of distribution in the plasma space (v_p) to the total plasma inflow $(PS + F_p)$.

Determination of $C_p(t)$

- $C_p(t)$: Arterial Input Function (AIF)
 - Subject-specific AIF (sAIF)
 - Gaussian and exponential model

$$C_p(t) = \sum_{n=1}^{N} \frac{A_n}{\sigma_n \sqrt{2\pi}} \exp\left(\frac{-(t-T_n)^2}{2\sigma_n^2}\right) + \frac{\alpha \exp(-\beta t)}{(1+\exp(-s(t-\tau)))}$$

Parker et al., MRM, 2006

Determination of $C_p(t)$

- $C_p(t)$: Arterial Input Function (AIF)
 - Population AIF (pAIF):
 - Modified Fritz Hansen bi-exponential model $C_p(t) = D(a_1 e^{-m_1 t} + a_2 e^{-m_2 t})$

Walker-Samuel et al., PMB, 2006 Parker et al., MRM, 2006

Pharmacokinetic Mapping

Courtesy: Dr. Subashini Vedanthm

Limitations

Fitting with 2CXMs with global uniform $C_{p}(t)$

- Improved fitting with sAIF in the first 2-3 very early enhancement time points
- All models have limited accuracy in catching up the rapid enhancement
- Hard to obtain correct AIF
- A uniform AIF might not be ideal

Objective

- Inspired by the intravascular dispersion concept, we replace the global AIF with a local AIF in order to account for local variations in contrast delivery.
- Compare the goodness-of-fit of the dispersion and non-dispersion models
- Compare diagnostic performance of the dispersion and nondispersion models

Methods

Dispersion model : mLDRW model

• The intravascular transport of a bolus of contrast agent is driven by a combination of dispersion and convection effects

$$\frac{\partial}{\partial t} C_p(x,t) = D \frac{\partial^2}{\partial^2 x} C_p(x,t) - v \frac{\partial}{\partial x} C_p(x,t)$$

• Assuming a Gaussian distribution of the traveling contrast bolus $C_p(t)$, it can be solved using a modified local density random walk (mLDRW) model

$$C_p(t) = \alpha \sqrt{\frac{\kappa}{2\pi t}} e^{-\frac{\kappa(t-MTT)^2}{2t}}; \kappa = v^2/D$$

• mLDRW model:

$$C_t(t) = \alpha \sqrt{\frac{\kappa}{2\pi t}} e^{-\frac{\kappa (t - MTT)^2}{2t}} * K^{trans} e^{-k_{ep} t}$$

mLDRW model

Courtesy: Dr. Subashini Vedanthm Mischi et al., IEEE EMBS 2013, Carr et al., ISMRM 2014

Comparison

• The standard Tofts model

$$C_t(t) = C_p(t) * K^{trans} e^{-K^{trans} t/v_e} = C_p(t) * K^{trans} e^{-k_{ep} t}$$

• The extended Tofts model

$$C_{t}(t) = v_{p}C_{p}(t) + C_{p}(t) * K^{trans}e^{-k_{ep}t}$$

• The comprehensive 2CXM

$$C_t(t) = F_p C_p(t) * [Ae^{-\alpha t} + (1 - A)e^{-\beta t}]$$

• mLDRW model

$$C_t(t) = \alpha \sqrt{\frac{\kappa}{2\pi t}} e^{-\frac{\kappa (t - MTT)^2}{2t}} * K^{trans} e^{-k_{ep} t}$$

Data Acquisition

- 37 patients (24 to 73 yrs) with 60 known masses
 - 43 malignant tumors (32 IDC, 3 ILC, 2 Mucinous Carcinoma, 6 DCIS)
 - 17 benign lesions
- A 0.1 mmol/kg dose of Gadobutrol (Gadovist) was injected at the rate of 2 ml/sec followed by a 20ml saline flush
- Imaging acquisition
 - Differential subsampling with Cartesian ordering (DISCO) DCE-MRI
 - 3D RF-spoiled gradient recalled echo (SPGR) sequence with Dixon fat-water separation

Evaluation

- Goodness-of-fit:
 - $MSE = \frac{SSE}{n-m}$
 - F test: evaluate if the mLDRW model generates a significant better fitting to other models
- Diagnostic performance
 - ROC curve is built over the ROI voxels representing the class of malignant and benign tissue for each model
 - The ROC generation is performed via a 5-fold cross validation process on 60 tumors.

Result

Goodness-of-fit

• Population AIF used in non-dispersion models

Goodness-of-fit

• Fitting errors over the entire dataset

		MSE	p (F-test)
	Tofts	0.0058 ± 0.0106	<< 0.01
Population AIF	Ext. Tofts	0.0057 ± 0.0105	<< 0.01
(pAIF, 60 tumors)	2CXM	0.0035 ± 0.0066	<< 0.01
	mLDRW	0.0013±0.0026	
	Tofts	0.0051 ± 0.0079	0.0095
Patient-Specific AIF	Ext. Tofts	0.0045 ± 0.0067	0.0245
(sAIF, 18 tumors)	2CXM	0.0037 ± 0.0064	0.0254
	mLDRW	0.0023±0.0041	

Pharmacokinetic mapping (voxel-by-voxel)

Diagnostic Performance

- AUC for κ is 0.96, the highest among all the compared parameters.
 - Sensitivity of $87.1\% \pm 3.9\%$
 - Specificity of $93.1\% \pm 2.8\%$

Discussion and Limitations

- The malignant tissue is highly correlated with the 'hot spots' in the dispersion map κ (i.e., $\kappa = v^2/D$)
 - Vascular endothelial growth factor (VEGF)
 - Vascular tortuosity mechanism has a counter effect on dispersion
- A constant T_{10} value to convert the DCE signal-time curves to tissue concentration-time curves without acquiring the T_{10} maps and B_1 maps that account for the spatially varying signal changes

Conclusion

- A new window is proposed to investigate the physiology of breast tumor microcirculation through the estimation of an intravascular dispersion property
- The mLDRW dispersion no longer requires the measurement of AIF
- The goodness-of-fit is greatly improved with mLDRW model
- The dispersion related parameter, *κ*, demonstrates superior performance in discriminating benign and malignant tumor.

Power Pitch, Breast Pharmacokinetic Mapping using an Abbreviated Dynamic Contrast Enhanced (DCE) MRI Protocol. Joint Annual Meeting ISMRM / ESMRMB, May 11-16, 2019, Montreal, CA

Acknowledgement

- BRUCE DANIEL
- BRIAN HARGREAVES
- SUBASHINI SRINIVASAN
- JIANMIN YUAN
- CATHERINE MORAN
- STEFFI PERKINS

Thank you

