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Content-based Image Retrieval

e Content-based image retrieval is the task of searching images by
analyzing the contents of the image rather than the metadata such
as keywords, tags, or descriptions associated with the image.
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Content-based Image Retrieval for Medical Imaging

e Consider the image retrieval problem:
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Figure 2: Image retrieval (N Hedge, et al., Nature 2019).



Other Varia of the Retrieval Systems.

e Such retrieval systems can be applied to histopathological images

Figure 3: Image retrieval (Zhang, et al., IEEE Trans. Med 2015).



Other Variants of the Retrieval Systems.

e Such Retrieval system can also be applied to morphological neuron
data-base

Figure 4: Image retrieval (Zhongyu Li, IEEE Trans. Pattern Recogn. 2017).



Other Variants of the Retrieval Systems.

e The crux of such retrieval system is a hash function that computes a
binary code from the representations of the input
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Figure 5: Image retrieval (Zhongyu Li, IEEE Trans. Pattern Recogn. 2017).



What is hashi

e A hash function is a function takes a group of characters or numbers
(called a key) and maps it into a value of a certain length.

e Hash functions and their associated hash tables are used in data
storage and retrieval applications to access data in a small and
nearly constant time per retrieval.

e A collision or clash occurs when two distinct pieces of data have
the same hash value
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What is the locally sensitive hashing (LSH)?

e A locally sensitive hash (LSH) function is an algorithmic technique
that hashes similar input items into the same “buckets” with high
probability.

e In a sense, we want a controlled collision in LSH.

e Mathematically,

Ppenlh(x) = h(X)] = sim(x, X). (1)
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Figure 7: Locally Sensitive Hash function.



What is the use case of LSH?

e Given a query, we need to do a look up via nearest neighbor search.

e The complexity of k-NN using Euclidean distance is O(mdk), where
m is the size of data-base and d is the dimension of data-points.

Figure 8: Image Lookup via the Nearest Neighborhood.



An example of LSH

e We can speed up the look up by using LSH that maps data points
to a discrete set h: IRY — {0,1,2,--- ,q—1}.

e A possible hash function for ¢ = 2 (Hamming code) is proposed by
Raginsky, et al. [NIPS 2009], where

1
ht b w(X) def 5 [1 + sign(cos({w, x) + b) + t)} , (2)
where
1. t ~ Uniform[—1,1].
2. b ~ Uniofmr[—m, 7).

3. wn~ N(O7 ’dxd)~

e A hash code of length n can be constructed by sampling these

random variables i.i.d., i.e., h"(x) = (he, by .wi (X), -, e, by 0, (X)),
where t1,- -+, t, ~ Uniform[—1,1], by, - , b, ~ Uniofmr[—m, 7],
and wy, -+ ,w, ~ N(0, lyxqg).



Simulations on MNIST Data-Set

e The hamming distance remains flat as the Euclidean distance
change.
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Simulations on MNIST Data-Set

e Another way to look at the performance is via the Precision-Recall

curve
- |{relevant documents} N {retrieved documents}|
recision = :
P |{retrieved documents}|
relevant documents} N {retrieved documents
Il
recall = .

|{relevant documents}|
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Figure 10: The precision-recall curve for different lengths of the hash codeword. il
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Figure 11: Examples of image retrieval for three query images on the MNIST

database. The images are compressed via an autoencoder with 500 latent variables.

and the incorrect retrieved

)

(red box

images are shaded with the gray color. The top row shows top 100 neighbors for each

query according to Euclidean distance. The bottom row shows nearest neighbors

The query image is in the top left of the collage
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Why do we get a poor performance?

e The main theorem of Raginsky, et al. [NIPS 2009] computes the
probability of collision in terms of a kernel function

8 o0
Ip[ht,b,w( ) - ht bw 71'7 Z mX)7

where we recall the hash function
1
hebw(x) & 2 [1+sign(cos(w, ) + )+ )], (3)

e The main cause of the poor performance is due to the kernel
K(x, %) = exp(—||x — x||3) that is not refined for the hashing task.

e Task 1: We need to improve the performance of hash function by
optimizing the kernel.

e Task 2: We need to extend the hamming codes to general
non-binary alphabets.
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A novel algorithm for the optimization of the radial kernels

e Since we would like to capture the Euclidean structure in image
retrieval problems, we focus on the class of the radial kernels

i &f {K LX XX o R K(xi, %) = (||x; — x]|2), 1 € cl(IR)}.

Theorem: (I. J. SCHOENBERG) A continuous function
¥ : IRy — IR is positive semi-definite if and only if it admits the
following integral representation

vy = [ e dute),

for a finite positive Borel measure v on IR.. Moreover, if
supp(v) # {0}, then v is positive definite.
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A novel algorithm for optimization of the kernel

e From the Schonberg's representation theorem, the following integral
representation of the radial kernels follows

K(x, %) = / e~SIx=%l5 (dg),  ¥x, % € RY, u e M4(R,),
J0O

e We optimize the kernel-target alignment over the distribution p
instead of the radial kernels. In particular,

sup ———— Z YiYj / e~¢lx =l (de),
neP I'I 1<I<_/<n
where (i, yi)1<i<n ~ Px,, are labeled data.

e Questions:
e How do we obtain labeled data (y;, xj)1<i<n in unsupervised tasks
such as the image retrieval?
e How do we optimize a distribution?

15



k-mean clustering for generating labeled data in unsupervised

tasks

e We perform k-mean clustering on a small subset of the data-base.
k
. . 2
arg jmin_ > > lx— puill,
i=1 xeS5;
where gy is the mean of points in the cluster Sy.
e Choose an index £ € {1,2,--- , k}, and assign the class labels
+1 x, €8

= 4
Y -1 X,'QS@. ()

K-means clustering on the digits dataset (PCA-reduced data)
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A novel algorithm for the optimization of the radial kernels

e The main idea is to optimize the samples (particles) from the
distribution & = (&1, -+ ,&N) ~iia. p-

o Let z,, = (Ym, Xm) and z,, = (¥m, Xm) denote two samples randomly
drawn from the training data-set.

e We update the position of the particles using projected Langevin
dynamics

&m = P=w <£m—1 - nvj’\l(ém—l; Zm, im) + ﬁCm> , (5)

o &, ~ N(0, Iyxpy) is isotropic Gaussian noise, (3 is the inverse
temperature, and jN(Em_l; Zp, Zmy) is a cost function whose k-th
partial derivative is defined as follows

8JZ\,lh(£m; Zm, Zpm) def OE,(&Em; Zm, Zm) ﬁ&Wé(ﬁﬁ,ﬁN)

ok oek 2 ok ©
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A novel algorithm for the optimization of the radial kernels

e The intuition for this algorithm is from the kinetic theory of
non-ideal gases in statistical physics.

1

e The gas has the inverse temperature of T = 3 and the particles are

interactive.

e Upon hitting the boundaries (wall), the confined particles are
reflected elastically.
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Histogram of the particles

e We can plot the histogram of the particles at each given iteration of
the algorithm
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Figure 12: The evolution of the histogram of Langevin particles
e, N e = =Ry 19



Mean-Field PDE

e Define the continuous-time embedding of the empirical measure
(7iN)ken associated with the projected Langevin particles in Eq.
(?7), ie,

N
utN(f)“—emeJf Sode—¢ley), 0<t<T, (D)
k=1

e Suppose the step size 7 = ny satisfies ny — 0, N/ log(nn/N) — oo,
and nn/ log(nn/N) — 0 as N — oo.

e Furthermore, suppose the Lebesgue density of the initial particles
qo(§) = dpo/d¢ exists.
e Then, for any fixed t € [0, T], uN vkl pe as N — oo.
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e The Lebesgue density of the limiting measure p}(§) = du}/d€ is a
solution to the following distributional dynamics with Robin
boundary conditions as well as an initial condition

2
4O _ 2 (e 260 + 5 2 (e,

ot o€ o¢
Op: 0

D)+ bme) e 6P| =0 veel. T
Op.(€) 0 .

S PO e RN, =0, veel,T]

po(§) = qo(§), V€ € [&,&u]
p(6) 20, VE€ el / pE)dE =1, Vee[o,T],

where the functional J(&, p+(§)) is defined

s, pe(©) = E[yg exp(ellx ~ 21D)] + [ B[ ew(—(¢ +€)llx — £I8)] pe(€ e
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Simulations on MNIST Data-Set

e Another way to look at the performance is via the Precision-Recall

curve
- |{relevant documents} N {retrieved documents}|
precision = _
|{retrieved documents}|
I |{relevant documents} N {retrieved documents}|
recall =
|{relevant documents}|
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Figure 13: The precision-recall curve for different lengths of the hash codeword.
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Simulations on MNIST Data-Set
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Figure 14: The scatter plots of normalized Hamming distance versus Euclidean

distance, where the hash functions are generated with the random feature using

untrained Gaussian kernel with the bandwidth parameter of v =1 (top row), and

trained kernel with our algorithm in conjunction with a k-mean clustering (bottom

row). Panel (a): 128 bits, Panel (b): 512 bits, Panel (c): 4096 bits. 28



Can we generalize hash function to other alphabets?

e We propose the following hash function
def
hew(x) = [a({w, @np(x)) + t)] mod g,
where w ~ N(O, Inyxn, ). t ~ Uniform[0, 1], and
ono(x) = (cos({wi, x) + be))r<ksno;

e To compute the distance between two hash codes, we leverage the
Lee distance between two code-words
x=(xt," "+, %),y = (y1,"** , ¥n) € Zy of length n as follows

e, y) & me{ ~ y) mod g, (y; — x) mod q}

= Z min{|y; — xi|, g — |yi — xi[}-
i=1

In the special case of g = 2 and g = 3, the Lee distance corresponds
to the Hamming distance.
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of Lee distance vs Euclidean

0.12

0.1

0.08

0.06

0.04

0.02

0.04

0.03

0.02

0.01 A

)
W
L\
J/ﬂ W
N N

0 0.2 0.4 0.6 0.8

0.05

0.04

0.03

0.02

0.01

1 0

il
0.2 0.4 0.6

|
|

M

¥

I

ﬂ
B,
0.8 1

1

Figure 15: The (normalized) histogram of the (rescaled) Lee distance (red color)
and the (rescaled) Euclidean distance (blue color) of a sample query from each point
of the MNIST data-base for different values of g, Panel (a): g = 2, Panel (b): g = 20,
Panel (c): g =50. Increasing g in the Lee distance yields a better approximation for

the Euclidean distance.
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Simulations on MNIST Data-Set

e Another way to look at the performance is via the Precision-Recall

curve
- |{relevant documents} N {retrieved documents}|
recision = :
P |{retrieved documents}|
relevant documents} N {retrieved documents
Il
recall = .

|{relevant documents}|
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Figure 16: The precision-recall curve for different lengths of the hash

27
codeword.



L
o
@
S
=)
©
o
-
g
2
=
c
S
()]
c
2
=
S
=
=
(7]

IITITIBTET T

QAV0VVAIAIVIC
QVAQQAVIVVAOI

(Euclidean distance)

CorVrsend T
TEDNT NV~ L
Rl S PR
oSN T 00 ™
OT T YL TN

DAQVOVANQY
VAVQ0OF 0 QS
QAVQD VI ONY

NONN NN SN NN N

(4096 Hamming ZJ] codes)

IETTro>F @y
FroexsCcossI N
TIT@MYES Y
ITreseEr<soyr

EEEEEREEREEREE
SAMESESESENENYORN

NNNNSNSNSSNSNNN

28

1024 Hamming Z{1) codes
10



Application to Classification Tasks

e The proposed method for optimizing RBF kernels can also be used
for other machine learning tasks such as classification using kernel
SVMs.

e Given the training samples (y;, Xj)1<i<n, the kernel SVMs solve the
following optimization problem

n D
1 A
min — max < 0,1 — oo X w + Z|lex]|3.
i3 { > e k% llxl?

e Here, p(x;;wy) is the random feature associated with a kernel in
Rahimi and Recht integral representation of the translation invariant
kernels

M&ﬂ:LﬂMMﬂkmww% 9)

where K(x, %) = ¢(x — X), and v is the probability distribution of
random variable w.
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Application to Classification Tasks

o
»
b
o
©

Zo24
E 015
7023
g 01 AN
Zoz2 A S
{ z 005
mu/ u, I ‘,, % £ o021

0 0
200 400 600 800 1000 200 400 600 800 1000 500 100 500 1000
Number of Random Feature Samples (N) ~ Number of Random Feature Samples (N)  Number of Random Feature Samples (N Number of Random Feature Samples (N)

o
200 400 800 1000 < 400 80 1000 ¥ 0 200 400 600 800 1000 < 00 400 600 800 1000
Number of Random Feature Samples (V) Nunoerof Rasdom Festure Samples (N)  Number of Random Feature Samples (N Nunber of Randow Feuture Samples (N)

(a) (b) (<) (d)
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Application to Classification Tasks

e Many ideas and techniques in statistical physics are relevant to
machine learning problems.

e The proposed method for optimizing RBF kernels in our work is
based on idea of non-ideal gases.

e Currently, we are trying to apply the methods we developed to
medical imaging and the isodose distribution for radiation therapy
treatment planning.
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