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Content-based Image Retrieval

• Content-based image retrieval is the task of searching images by

analyzing the contents of the image rather than the metadata such

as keywords, tags, or descriptions associated with the image.

Figure 1: Content-Based Image Retrival
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Content-based Image Retrieval for Medical Imaging

• Consider the image retrieval problem:

Figure 2: Image retrieval (N Hedge, et al., Nature 2019).
2



Other Variants of the Retrieval Systems.

• Such retrieval systems can be applied to histopathological images

Figure 3: Image retrieval (Zhang, et al., IEEE Trans. Med 2015).
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Other Variants of the Retrieval Systems.

• Such Retrieval system can also be applied to morphological neuron

data-base

Figure 4: Image retrieval (Zhongyu Li, IEEE Trans. Pattern Recogn. 2017).
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Other Variants of the Retrieval Systems.

• The crux of such retrieval system is a hash function that computes a

binary code from the representations of the input

Figure 5: Image retrieval (Zhongyu Li, IEEE Trans. Pattern Recogn. 2017).
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What is hashing?

• A hash function is a function takes a group of characters or numbers

(called a key) and maps it into a value of a certain length.

• Hash functions and their associated hash tables are used in data

storage and retrieval applications to access data in a small and

nearly constant time per retrieval.

• A collision or clash occurs when two distinct pieces of data have

the same hash value

Figure 6: Hash function
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What is the locally sensitive hashing (LSH)?

• A locally sensitive hash (LSH) function is an algorithmic technique

that hashes similar input items into the same “buckets” with high

probability.

• In a sense, we want a controlled collision in LSH.

• Mathematically,

IPh∈H[h(x) = h(x̃)] = sim(x , x̃). (1)

Figure 7: Locally Sensitive Hash function.
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What is the use case of LSH?

• Given a query, we need to do a look up via nearest neighbor search.

• The complexity of k-NN using Euclidean distance is O(mdk), where

m is the size of data-base and d is the dimension of data-points.

Figure 8: Image Lookup via the Nearest Neighborhood.
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An example of LSH

• We can speed up the look up by using LSH that maps data points

to a discrete set h : IRd 7→ {0, 1, 2, · · · , q − 1}.
• A possible hash function for q = 2 (Hamming code) is proposed by

Raginsky, et al. [NIPS 2009], where

ht,b,ω(x)
def
=

1

2

[
1 + sign(cos(〈ω, x〉+ b) + t)

]
, (2)

where

1. t ∼ Uniform[−1, 1].

2. b ∼ Uniofmr[−π, π].

3. ω ∼ N(0, Id×d).

• A hash code of length n can be constructed by sampling these

random variables i.i.d., i.e., hn(x) = (ht1,b1,ω1 (x), · · · , htn,bn,ωn(x)),

where t1, · · · , tn ∼ Uniform[−1, 1], b1, · · · , bn ∼ Uniofmr[−π, π],

and ω1, · · · ,ωn ∼ N(0, Id×d).
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Simulations on MNIST Data-Set

• The hamming distance remains flat as the Euclidean distance

change.

Figure 9: The scatter plots of normalized Hamming distance versus Euclidean

distance for the hash function, where the hash functions. Panel (b): 512 bits, Panel

(c): 4096 bits
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Simulations on MNIST Data-Set

• Another way to look at the performance is via the Precision-Recall

curve

precision =
|{relevant documents} ∩ {retrieved documents}|

|{retrieved documents}|

recall =
|{relevant documents} ∩ {retrieved documents}|

|{relevant documents}|
.

Figure 10: The precision-recall curve for different lengths of the hash codeword.
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Simulations on MNIST Data-Set

Figure 11: Examples of image retrieval for three query images on the MNIST

database. The images are compressed via an autoencoder with 500 latent variables.

The query image is in the top left of the collage (red box), and the incorrect retrieved

images are shaded with the gray color. The top row shows top 100 neighbors for each

query according to Euclidean distance. The bottom row shows nearest neighbors

according to normalized Hamming distance with a 4096-bit code using an untrained

kernel.
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Why do we get a poor performance?

• The main theorem of Raginsky, et al. [NIPS 2009] computes the

probability of collision in terms of a kernel function

IP
[
ht,b,ω(x) = ht,b,ω(x̃)

]
=

8

π2

∞∑
m=0

1− K (mx ,mx̃)

4m2 − 1
,

where we recall the hash function

ht,b,ω(x)
def
=

1

2

[
1 + sign(cos(〈ω, x〉+ b) + t)

]
, (3)

• The main cause of the poor performance is due to the kernel

K (x , x̃) = exp(−‖x − x‖2
2) that is not refined for the hashing task.

• Task 1: We need to improve the performance of hash function by

optimizing the kernel.

• Task 2: We need to extend the hamming codes to general

non-binary alphabets.
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A novel algorithm for the optimization of the radial kernels

• Since we would like to capture the Euclidean structure in image

retrieval problems, we focus on the class of the radial kernels

K def
=
{
K : X × X → IR : K (xi , xj) = ψ(‖xi − xj‖2), ψ ∈ C 1(IR)

}
.

Theorem: (I. J. Schöenberg) A continuous function

ψ : IR+ → IR is positive semi-definite if and only if it admits the

following integral representation

ψ(r) =

∫ ∞
0

e−tr
2

dµ(t),

for a finite positive Borel measure ν on IR+. Moreover, if

supp(ν) 6= {0}, then ψ is positive definite.
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A novel algorithm for optimization of the kernel

• From the Schönberg’s representation theorem, the following integral

representation of the radial kernels follows

K (x , x̃) =

∫ ∞
0

e−ξ‖x−x̃‖2
2µ(dξ), ∀x , x̃ ∈ IRd , µ ∈M+(IR+),

• We optimize the kernel-target alignment over the distribution µ

instead of the radial kernels. In particular,

sup
µ∈P

2

n(n − 1)

∑
1≤i<j≤n

yiyj

∫ ∞
0

e−ξ‖xi−xj‖2
2µ(dξ),

where (xi , yi )1≤i≤n ∼ Px,y are labeled data.

• Questions:

• How do we obtain labeled data (yi , xi )1≤i≤n in unsupervised tasks

such as the image retrieval?

• How do we optimize a distribution?
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k-mean clustering for generating labeled data in unsupervised

tasks

• We perform k-mean clustering on a small subset of the data-base.

arg min
S1,··· ,Sk

k∑
i=1

∑
x∈Si

‖x − µi‖2
2,

where µ` is the mean of points in the cluster S`.
• Choose an index ` ∈ {1, 2, · · · , k}, and assign the class labels

yi =

{
+1 xi ∈ S`
−1 xi 6∈ S`.

(4)
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A novel algorithm for the optimization of the radial kernels

• The main idea is to optimize the samples (particles) from the

distribution ξ = (ξ1, · · · , ξN) ∼i.i.d. µ.

• Let zm = (ym, xm) and zm = (ỹm, x̃m) denote two samples randomly

drawn from the training data-set.

• We update the position of the particles using projected Langevin

dynamics

ξm = PΞN

(
ξm−1 − η∇ĴN(ξm−1; zm, z̃m) +

√
2η

β
ζm

)
, (5)

• ξm ∼ N(0, IN×N) is isotropic Gaussian noise, β is the inverse

temperature, and ĴN(ξm−1; zm, z̃m) is a cost function whose k-th

partial derivative is defined as follows

∂ĴNε,h(ξm; zm, z̃m)

∂ξkm

def
=
∂Eγ(ξm; zm, z̃m)

∂ξkm
+

h

2

∂W 2
ε,2(µ̂N

m, ν̂
N)

∂ξkm
. (6)
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A novel algorithm for the optimization of the radial kernels

• The intuition for this algorithm is from the kinetic theory of

non-ideal gases in statistical physics.

• The gas has the inverse temperature of T = 1
β , and the particles are

interactive.

• Upon hitting the boundaries (wall), the confined particles are

reflected elastically.
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Histogram of the particles

• We can plot the histogram of the particles at each given iteration of

the algorithm

Figure 12: The evolution of the histogram of Langevin particles

ξ1, · · · , ξN ∈ Ξ = IR+ 19



Mean-Field PDE

• Define the continuous-time embedding of the empirical measure

(µ̂N
k )k∈N associated with the projected Langevin particles in Eq.

(??), i.e.,

µN
t (ξ)

def
= µ̂N

b t
η c

=
1

N

N∑
k=1

δ(ξ − ξkb t
η c

), 0 ≤ t ≤ T , (7)

• Suppose the step size η = ηN satisfies ηN → 0, N/ log(ηN/N)→∞,

and ηN/ log(ηN/N)→ 0 as N →∞.

• Furthermore, suppose the Lebesgue density of the initial particles

q0(ξ) = dµ0/dξ exists.

• Then, for any fixed t ∈ [0,T ], µN
t

weakly→ µt as N →∞.
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• The Lebesgue density of the limiting measure p∗t (ξ) = dµ∗t /dξ is a

solution to the following distributional dynamics with Robin

boundary conditions as well as an initial condition

∂pt(ξ)

∂t
=

∂

∂ξ

(
pt(ξ)

∂

∂ξ
J(ξ, pt(ξ))

)
+

1

β

∂2

∂ξ2
(pt(ξ)) ,

∂pt(ξ)

∂ξ
+ βpt(ξ)

∂

∂ξ
J(ξ, pt(ξ))

∣∣∣
ξ=ξl

= 0, ∀t ∈ [0,T ],

∂pt(ξ)

∂ξ
+ βpt(ξ)

∂

∂ξ
J(ξ, pt(ξ))

∣∣∣
ξ=ξu

= 0, ∀t ∈ [0,T ],

p0(ξ) = q0(ξ), ∀ξ ∈ [ξl , ξu]

pt(ξ) ≥ 0, ∀ξ ∈ [ξl , ξu],

∫
Ξ

pt(ξ)dξ = 1, ∀t ∈ [0,T ],

where the functional J(ξ, pt(ξ)) is defined

J(ξ, pt(ξ)) = IE
[
yŷ exp(−ξ‖x − x̂‖2

2)
]

+

∫ ∞
0

IE
[

exp(−(ξ + ξ′)‖x − x̂‖2
2)
]
pt(ξ

′)dξ′.
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Simulations on MNIST Data-Set

• Another way to look at the performance is via the Precision-Recall

curve

precision =
|{relevant documents} ∩ {retrieved documents}|

|{retrieved documents}|

recall =
|{relevant documents} ∩ {retrieved documents}|

|{relevant documents}|
.

Figure 13: The precision-recall curve for different lengths of the hash codeword.
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Simulations on MNIST Data-Set with 4096 bits Hash codes
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Simulations on MNIST Data-Set

Figure 14: The scatter plots of normalized Hamming distance versus Euclidean

distance, where the hash functions are generated with the random feature using

untrained Gaussian kernel with the bandwidth parameter of γ = 1 (top row), and

trained kernel with our algorithm in conjunction with a k-mean clustering (bottom

row). Panel (a): 128 bits, Panel (b): 512 bits, Panel (c): 4096 bits. 24



Can we generalize hash function to other alphabets?

• We propose the following hash function

ht,w (x)
def
= dq(〈w ,ϕN0 (x)〉+ t)emod q,

where w ∼ N(0, IN0×N0 ), t ∼ Uniform[0, 1], and

ϕN0 (x)
def
= (cos(〈ωk , x〉+ bk))1≤k≤N0 ,

• To compute the distance between two hash codes, we leverage the

Lee distance between two code-words

x = (x1, · · · , xn), y = (y1, · · · , yn) ∈ Zn
q of length n as follows

dLee(x , y)
def
=

n∑
i=1

min{(xi − yi ) mod q, (yi − xi ) mod q}

=
n∑

i=1

min{|yi − xi |, q − |yi − xi |}.

In the special case of q = 2 and q = 3, the Lee distance corresponds

to the Hamming distance.
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Histograms of Lee distance vs Euclidean distance

Figure 15: The (normalized) histogram of the (rescaled) Lee distance (red color)

and the (rescaled) Euclidean distance (blue color) of a sample query from each point

of the MNIST data-base for different values of q, Panel (a): q = 2, Panel (b): q = 20,

Panel (c): q = 50. Increasing q in the Lee distance yields a better approximation for

the Euclidean distance. 26



Simulations on MNIST Data-Set

• Another way to look at the performance is via the Precision-Recall

curve

precision =
|{relevant documents} ∩ {retrieved documents}|

|{retrieved documents}|

recall =
|{relevant documents} ∩ {retrieved documents}|

|{relevant documents}|
.

Figure 16: The precision-recall curve for different lengths of the hash

codeword.
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Simulations on MNIST Data-Set

(Euclidean distance)

(4096 Hamming Zn
2 codes)

(1024 Hamming Zn
10 codes)
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Application to Classification Tasks

• The proposed method for optimizing RBF kernels can also be used

for other machine learning tasks such as classification using kernel

SVMs.

• Given the training samples (yi , xi )1≤i≤n, the kernel SVMs solve the

following optimization problem

min
α∈IRD

1

n

n∑
i=1

max

{
0, 1−

D∑
k=1

yiαiϕ(xi ;ωk)

}
+
λ

2
‖α‖2

2.

• Here, ϕ(xi ;ωk) is the random feature associated with a kernel in

Rahimi and Recht integral representation of the translation invariant

kernels

K (x , x̃) =

∫
Ω

ϕ(x ;ω)ϕ(x̃ ;ω)ν(dω), (9)

where K (x , x̃) = φ(x − x̃), and ν is the probability distribution of

random variable ω.
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Application to Classification Tasks

(a) (b) (c) (d)

Figure 17: The training and test errors (first row) and the run-times (second row) of

kernel optimization algorithms using proposed method, the SGD optimization, and

Importance Sampling (IS). Panel (a): Buzz, Panel (b): Online news popularity,

Panel (c): Adult, Panel (d): Seizure
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Application to Classification Tasks

• Many ideas and techniques in statistical physics are relevant to

machine learning problems.

• The proposed method for optimizing RBF kernels in our work is

based on idea of non-ideal gases.

• Currently, we are trying to apply the methods we developed to

medical imaging and the isodose distribution for radiation therapy

treatment planning.
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