High-resolution Breast DWI

with improved Nyquist Ghost Correction and Simultaneous Multislice Imaging

Jessica McKay, Ph.D.

Stanford Cancer Imaging Training (SCIT) Seminar RSL Meeting

Mentored by Drs. Brian Hargreaves and Bruce Daniel Ph.D. work advised by Dr. Patrick J Bolan

October 21st, 2020

Goal: To develop a strategy for breast DWI with high resolution and image quality within a clinically acceptable scan time.

• Diffusion weighting

Motivation

- Why breast DWI?
- Problems with SE-EPI: distortion, Nyquist ghosts, limited resolution

VANEDEVANEDEVANEDEVANEDEVANEDEVANEDEVANEDEVANEDEVANEDEVAN

Part 1: Ghost correction

High

OUTLINE

- The Nyquist ghost
- Referenceless ghost correction
- Part 2: Axially reformatted SMS
 - Phantom study
- **Resolution** Reader study

Discussion, future directions, & summary

- 1) <u>Create</u> signal: Magnetic field (B₀) + RF pulse create signal from Hydrogen "dipoles" (of H₂O).
- 2) <u>Locate</u> signal: Magnetic field (spatial) gradients correspond to the k-space trajectory.
- 3) <u>Measure</u> signal: Tissue relaxation properties (Proton density, T₁, T₂, etc.) create varying contrasts.

Net Magnetization

- 1) <u>Create</u> signal: Magnetic field (B₀) + RF pulse create signal from Hydrogen "dipoles" (of H₂O).
- 2) <u>Locate</u> signal: Magnetic field (spatial) gradients correspond to the k-space trajectory.
- 3) <u>Measure</u> signal: Tissue relaxation properties (Proton density, T₁, T₂, etc.) create varying contrasts.

- MRI in three steps: 1) <u>Create</u> signal: Magnetic field (B₀) + RF pulse create signal from Hydrogen "dipoles" (of H₂O).
- 2) <u>Locate</u> signal: Magnetic field (spatial) gradients correspond to the k-space trajectory.
- 3) <u>Measure</u> signal: Tissue relaxation properties (Proton density, T₁, T₂, etc.) create varying contrasts.

- 1) <u>Create</u> signal: Magnetic field (B₀) + RF pulse create signal from Hydrogen "dipoles" (of H₂O).
- 2) <u>Locate</u> signal: Magnetic field (spatial) gradients correspond to the k-space trajectory.
- 3) <u>Measure</u> signal: Tissue relaxation properties (Proton density, T₁, T₂, etc.) create varying contrasts.

$$k(t) = \gamma \int_{0}^{t} G(x, y, t) dt$$

$$k_{RO} = k_x$$

 $k_{PE} = k_y$

- 1) <u>Create</u> signal: Magnetic field (B₀) + RF pulse create signal from Hydrogen "dipoles" (of H₂O).
- 2) <u>Locate</u> signal: Magnetic field (spatial) gradients correspond to the k-space trajectory.
- 3) <u>Measure</u> signal: Tissue relaxation properties (Proton density, T₁, T₂, etc.) create varying contrasts.

- 1) <u>Create</u> signal: Magnetic field (B₀) + RF pulse create signal from Hydrogen "dipoles" (of H₂O).
- 2) <u>Locate</u> signal: Magnetic field (spatial) gradients correspond to the k-space trajectory.
- 3) <u>Measure</u> signal: Tissue relaxation properties (Proton density, T₁, T₂, etc.) create varying contrasts.

Gradient Echo

MRI in three steps:

- 1) <u>Create</u> signal: Magnetic field (B₀) + RF pulse create signal from Hydrogen "dipoles" (of H₂O).
- 2) <u>Locate</u> signal: Magnetic field (spatial) gradients correspond to the k-space trajectory.
- 3) <u>Measure</u> signal: Tissue relaxation properties (Proton density, T₁, T₂, etc.) create varying contrasts.

T_1 -weighted T_2 -weighted

Liu, Jin Li, et al. (2014).

Gradient Echo Spin Echo

T₁-weighted

 T_2 -weighted

Diffusion Encoding

Monopolar (Stejskal-Tanner)

$$S(b) = S_0 e^{-b*ADC}$$

For Monopolar: $b = \gamma^2 G_{Diff}^2 \delta^2 \left(\Delta - \frac{\delta}{3}\right)$

Breast DWI & ADC

Post-contrast T₁-weighted

Clinical applications of DWI for breast cancer

- **Treatment monitoring**: Increasing ADC values indicate treatment response earlier than conventional measurements
- **Diagnosis and staging**: Increase specificity and reduce unnecessary biopsies??
- Screening: detection without contrast

Problems with Breast DWI

Typically acquired using single shot SE-EPI

 Fast, no shot-to-shot phase errors, and low power deposition

But...

- **1. Low resolution**
- 2. Geometric distortion and chemical shift
- 3. Nyquist ghosts

Problems with Breast DWI

Typically acquired using single shot SE-EPI

PE

 Fast, no shot-to-shot phase errors, and low power deposition

But...

- 1. Low resolution
- 2. Geometric distortion and chemical shift
- 3. Nyquist ghosts

Problems with Breast DWI

Typically acquired using single shot SE-EPI

 Fast, no shot-to-shot phase errors, and low power deposition

But...

- 1. Low resolution
- 2. Geometric distortion and chemical shift
- 3. Nyquist ghosts

Post-contrast T₁-weighted

- MRI background
- Diffusion weighting

Motivation

- Why breast DWI?
- Problems with SE-EPI: distortion, Nyquist ghosts, limited resolution

LO-2/10-0-2/10-0-2/10-0-2/10-0-2/10-0-2/10-0-2/10-0-2/10-0-2/

Part 1: Ghost correction

High

OUTLINE

- The Nyquist ghost
- Referenceless ghost correction

- Part 2: Axially reformatted SMS
 - Phantom study
- **Resolution** Reader study

Discussion, future directions, & summary

Flashback to 1984... I mean, 2015

Purpose:

- L. To **characterize** the Nyquist ghost artifact
- To assess referenceless methods compared to the standard 3-line navigator in standard SE-EPI breast DWI

GH²**STBUSTERS**

20

Background: Nyquist Ghosts in EPI

Background: Three-line Navigator

- Often fails in breast imaging
 - Unsuppressed fat, bigger B₀ inhomogeneity, respiratory motion, etc.
- Even small ghosts can have a large impact on the ADC maps and bias ADC values

 $b = 0 s/mm^2$

ADC

Preliminary Studies: Discussion

- Bimodal coil distribution
- Fat affects the navigator even when it is suppressed in the image
- Linear but time varying the 3-line navigator measures the beginning of the echo train

Why referenceless?!

- Measures the weighted readout "average"
- Insensitive to fat because it does not rely on fitting

Preliminary Studies: Discussion

- Bimodal coil distribution
- Fat affects the navigator even when it is suppressed in the image
- Linear but time varying the 3-line navigator measures the beginning of the echo train

Why referenceless?!

- Measures the weighted readout "average"
- Insensitive to fat because it does not rely on fitting

Referenceless methods

- Data-driven approach (no reference scans needed)
- **Optimization** over ϕ and κ for a given cost function:

In Vivo Study: Methods

- 41 female subjects
- Single-shot 2D SE-EPI DWI derived from ACRIN 6698 clinical trial^{1,2}
- Siemens Prisma^{fit} 3T system with a Sentinelle 16-channel breast coil
- TR = 8 s, TE = 51/74 ms (monopolar/bipolar diffusion, N = 12/29)
- GRAPPA acceleration R = 3, acquisition time ≤ 5 min

Offline ghost correction with five 1storder methods (all coil-, slice-, and acquisition-specific)

- A) Standard 3-line navigator³
- B) Entropy Minimization^{4,5}
- C) Singular Value Decomposition (SVD)⁶
- D) Ghost/Object (G/O)
- E) Median ~ median(B, C, D)

[1] Hylton N, Partridge SC. 2012. | [2] Partridge SC, et al. Radiology 2018:180273. | [3] Maier JK, Vavrek RM, Glover GH. US Patents 5,151,656. 1992 | [4] Clare S. ISMRM, Toronto, 2003. p. 1041 | [5] Skare S, Clayton DB, Newbould R, Moseley M, Bammer R. Seattle, 2006. p. 2349. | [6] Peterson E, Aksoy M, Maclaren J, Bammer R. ISMRM, Toronto, 2015. p. 75. | [7] McKay JA, et al. ISMRM, Paris, 2017, p. 5339.

Results

All referenceless methods yield **reduced ghosts** compared to the standard approach

Understand the ghost

Referenceless methods

Assessment

- Characterized the ghost
 - Mostly linear but is affected by eddy currents
 - The 3-line navigator is unreliable, especially in the presence of fat

2016 ISMRM abstract: McKay JA, Moeller S, Ramanna S, Auerbach EJ, Nelson MT, Ugurbil K, Yacoub E, Bolan PJ. Improving EPI Phase Correction for Breast DWI.

- Implemented several referenceless methods
- Developed Ghost/Object minimization

2018 ISMRM abstract: McKay JA, Moeller S, Zhang L, Auerbach EJ, Nelson MT, Bolan PJ. Comparison of Referenceless Methods for EPI Ghost Correction in Breast DWI.

2018 ISMRM abstract: McKay JA, Moeller S, Ramanna S, Auerbach EJ, Metzger G, Nelson MT, Ugurbil K, Yacoub E, Bolan PJ. Novel Image-based Nyquist Ghost Correction of Diffusion-Weighted Echo Planar Imaging using Ghost/Object Minimization.

U.S. Patent Application, Filed June 3, 2019: McKay JA, Bolan PJ. System and Method for Nyquist Ghost Correction in Medical Imaging.

Referenceless methods reduced ghosts in breast DWI

MRM Note: McKay JA, Moeller S, Zhang L, Auerbach EJ, Nelson MT, Bolan PJ. Nyquist Ghost Correction of Breast Diffusion Weighted Imaging using Referenceless Methods. 2019.

2018 ISMRM Breast Workshop abstract: McKay JA, Moeller S, Zhang L, Auerbach EJ, Nelson MT, Bolan PJ. Referenceless Nyquist Ghost Correction of Breast Diffusion Weighted Imaging.

- MRI background
- Diffusion weighting

Motivation

- Why breast DWI?
- Problems with SE-EPI: distortion, Nyquist ghosts, limited resolution

NFOFNUNFOFNUNFOFNUNFOFNUNFOFNUNFOFNUNFOFNUNFOFNUNFOFNU

Part 1: Ghost correction

- The Nyquist ghost
- Referenceless ghost correction

Part 2:

High

OUTLINE

- Axially reformatted SMS
 - Phantom study
- **Resolution** Reader study

Discussion, future directions, & summary

- 1. To utilize **Simultaneous Multislice (SMS)** imaging to achieve high resolution breast DWI
 - 2. To evaluate **AR-SMS** with a **reader study**

Breast DWI with AR-SMS

Purpose

Simultaneous Multislice (SMS) Imaging (aka Multiband)

- Excite *multiple* 2D slices simultaneously (controlled aliasing)
- Also acquire a fully sampled reference scan (called Single Band reference)
- Each coil yields a linear combination of different slices (weighted by sensitivity profiles)
- Matrix inversion separates slices (GRAPPA)

Larkman et al JMRI 2001 (leg), Moeller et al ISMRM 2008, MRM 2010 (brain)

Axially Reformatted (AR) -SMS

Acquired

Radiologists prefer axial images

• **PE** is low-quality encoding

Reformatted

RO

Slice

TR / TE [ms]	PE	Echo spacing	# of echoes acquired	b-values (dir/avg)	Diffusion Scheme	Nominal resolution (RO x PE)	Coverage [mm] (R/L, A/P, H/F)	<u>Slice</u> : number, thickness, gap	GRAPPA and SMS	Partial Fourier	Acquisition Time [min:sec]
6500 / 60.80	H/F (Sagittal)	0.93 ms	38	4 at 0 s/mm ² , 24 at 800 s/mm ²	Monopolar	1.25 mm x 2.5 mm	320 (slice) x 240 (RO) x 240 (PE)	256 slices, 1.25 mm, 0 mm	R = 2 MB = 4 (R/L)	6/8 phase	4:52

Reconstruction Details

→ Slice

"topup," FSL. http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/topup.

RO-segmented EPI for Comparison

Motion between shots can cause artifacts

• Acquire a low-res navigator through the center of kspace to correct phase differences

Benefits

- Higher SNR
- Reduced geometric distortion and chemical shift artifact
- Potential gain in resolution

Disadvantages

- Slower in time
- Demanding on RO gradient

High Res Comparison: Methods

- 3 T Siemens Prisma^{Fit} with 16-ch Sentinelle breast coil
- 15 breast cancer patients + breast phantom with resolution grid
- DWI within ~5 min each
 - Standard: single-shot, axial SE-EPI, ACRIN 6698
 - **RS-EPI**: RO-segmented EPI, 5 segments, Wisner *et al.*'s
 - **AR-SMS**: Sagittal SE-EPI with simultaneous multislice (MB = 4)
- T_2 -weighted (T_2w) for comparison

Parameter	Standard	RS-EPI	AR-SMS	T ₂ - weighted
Sequence	Single- shot SE- EPI	SE-EPI, 5 RO segments	Single-shot SE-EPI	Turbo spin echo
TR/TE (ms)	8000/74	7800/64	6500/60.80	4500/72
Nominal Resolution	1.7 x 1.7 mm	1.8 x 1.8 mm	1.25 x 1.25 mm	0.8 x 0.8 mm
Slice thickness	4 mm	2.4 mm	2.5 mm	3 mm
PE	$R \rightarrow L$	$A \rightarrow P$	$H \rightarrow F$	$R \rightarrow L$
RO x PE FOV	320 x 320 mm	350 x 156.8 mm	240 x 240 mm	320 x 320 mm
# of Slices	36	56	256	60
Acceleration	R = 3	R = 2	R = 2 MB = 4	R = 2

[1] Partridge SC, et al. Radiology 2018:180273. [2] Wisner DJ, et al. JMRI 2014;40:674–681. [3] McKay JA, et al. Proc ISMRM. 25; 2017. p. 2115. 35

Results: resolution phantom

Reader Studv	reader: case:			
		Size on CE-MRI:	LD (mm):	
		Method A	Method B	Method C
	Size on b=800:	LD (mm):	LD (mm):	LD (mm):
 3 readers 28 subjects (8 screening, 20 ISPY) with 	Mean ADC value:	mean:	mean:	mean:
 30 lesions See 3 methods side-by-side in random 	Lesion Correspondence Confidence:	1 2 3 4 5	1 2 3 4 5	1 2 3 4 5
 order (not blinded) Measure size and ADC and score 	ADC confidence:	1 2 3 4 5	12345	1 2 3 4 5
 confidence in measurements Bank overall quality 				
Rate overall quality	overall quality rank (1 ^{sl} , 2 ^{sd} , 3 ^{sl}):			
・ Linear mixed model	overall quality:	1 2 3 4 5	1 2 3 4 5	1 2 3 4 5
FIRTER FRANKLEN				

ADC Maps

Method A: AR-SMS

Method B: RS-EPI

Method C: Std

ADC MAPS

T₁ Subtraction

Standard

RS-EPI

AR-SMS

Results

Quality Comparison by Linear Mixed Model

Method Comparison	Effect (95% CI)	p-value
RS-EPI vs. Standard	0.57 (0.36 <i>,</i> 0.77)	<0.001*
AR-SMS vs. Standard	1.31 (1.10, 1.52)	<0.001*
AR-SMS vs. RS-EPI	0.74 (0.54, 0.95)	<0.001*

Rank Comparison by Linear Mixed Model

Method Comparison	Effect (95% CI)	p-value
RS-EPI vs. Standard	-0.73 (-0.89, -0.58)	<0.001*
AR-SMS vs. Standard	-1.53 (-1.69, -1.40)	<0.001*
AR-SMS vs. RS-EPI	-0.80 (-0.95, -0.65)	<0.001*

Relative Rank Histogram

Overall Quality Score

Results

Confidence in measurement of lesion size

Method Comparison	Effect (95% CI)	p-value
RS-EPI vs. Standard	0.36 (0.15, 0.56)	0.002*
AR-SMS vs. Standard	0.48 (0.28, 0.68)	<0.001*
AR-SMS vs. RS-EPI	0.12 (-0.08, 0.32)	0.460

Confidence in ADC measurement

Method Comparison	Effect (95% CI)	p-value
RS-EPI vs. Standard	0.04 (-0.16, 0.25)	0.908
AR-SMS vs. Standard	0.16 (-0.05, 0.36)	0.309
AR-SMS vs. RS-EPI	0.11 (-0.10, 0.32)	0.296

Part 2: Summary

Development

Reader Study

- Used SMS with axially reformatting (AR) to achieve high resolution breast DWI
- Ghost/Object referenceless method reduced ghosts
- Applied topup (FSL) for distortion correction

Acknowledgement: Patrick Bolan, Eddy Auerbach, Essa Yacoub, Steen Moeller, Christophe Lenglet

2017 ISMRM abstract: McKay JA, Moeller S, Ramanna S, Auerbach EJ, Metzger G, Ugurbil K, Yacoub E, Bolan PJ. Comparison of methods for high spatial-resolution breast diffusion imaging.

2019 ISMRM abstract: McKay JA, Moeller S, Ramanna S, Church AL, Nelson MT, Auerbach EJ, Ugurbil K, Bolan PJ. Nyquist Ghost Correction of High-Resolution SMS Breast DWI with Ghost/Object Minimization.

- Conducted a reader study with 30 lesions
- 3 breast radiologists preferred the overall image quality of AR-SMS, followed by RS-EPI and Standard SE-EPI ~ with statistical significance
- Saw improved confidence in lesion size measurement

Radiology: McKay JA, Church AL, Rubin N, Emory TH, Hoven NF, Kuehn-Hajder JE,Nelson MT, Ramanna S, Auerbach EJ, Moeller S, and Bolan PJ. A comparison of methods for high spatial resolution diffusion weighted imaging in breast MRI. 2020;297:304–312

2020 ISMRM abstract: McKay JA, Church AL, Rubin N, Emory TH, Hoven NF, Kuehn-Hajder JE, Nelson MT, Bolan PJ. A Reader Study Comparing the Quality of High-Resolution Diffusion Weighted Imaging Methods for Breast MRI.

Final Summary

- Characterized the Nyquist ghost in breast DWI
- Implemented referenceless ghost corrections
- Developed Ghost/Object minimization
- Demonstrated that referenceless methods improve ghost correction in standard SE-EPI and AR-SMS
- Proposed a novel acquisition strategy for high resolution full coverage breast DWI in 5 minutes
 - Axially-Reformatted SMS
- Implemented reconstruction pipeline for AR-SMS
- Compared AR-SMS with standard and RS-EPI with phantom study and reader study
 - AR-SMS improved feature detection and SNR
 - Radiologist consistently preferred AR-SMS

Discussion Points

SMS provides very fast encoding, which allows us to reach high resolution breast DWI in a reasonable scan time.

DWI has clinical promise, but it isn't commonly used in the clinic. We need significant improvements to get the radiologists on board! Then we can assess the clinical usefulness.

Now what?

SMS provides very fast encoding, which allows us to reach high resolution breast DWI in a reasonable scan time.

With the Hargreaves lab:

- Combine SMS with multishot EPI with shot LLR reconstruction to reduce distortion (Yuxin Hu and Kitty Moran)
- Apply AR-SMS in other body regions especially liver and female pelvic imaging

DWI has clinical promise, but it isn't commonly used in the clinic. We need significant improvements to get the radiologists on board! Then we can assess the clinical usefulness.

With the Hargreaves lab:

 Assess the clinical performance in the context of non-contrast screening and the detection of invasive cancer in patients with DCIS

Acknowledgements

Center for Magnetic Resonance of Research

Grant support: NIH P41 EB015894 (NIBIB) | NIH R21 CA201834 (NCI) | NIH S10 OD017974-01 (OD) | UL1 TR002494

Miscellaneous MR images: http://insideinsides.blogspot.com

Especially...

- + Advisor: Pat Bolan
- Mike Garwood, Mehmet Akçakaya, and Greg Metzger
- + Steen Moeller
- + Sudhir Ramanna
- + Eddie Auerbach
- + Kamil Ugurbil
- + Essa Yacoub
- + Christophe Lenglet
- + Gosia Marjanska
- + Ivan Tkáč
- Clinicians: Mike Nelson, An Church, and Doug Yee
- + Readers: Noelle Hoven, Jessica Kuehn-Hajder, and Tim Emory
- Statisticians: Lynn Eberly, Nathan Rubin, and Lei Zhang

Thank you!