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Content-based Image Retrieval

e Content-based image retrieval is the task of searching images by
analyzing the contents of the image rather than the metadata such
as keywords, tags, or descriptions associated with the image.
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Content-based Image Retrieval for Medical Imaging

e Consider the image retrieval problem:
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Figure 2: Image retrieval (N Hedge, et al., Nature 2019).



Other Varia of the Retrieval Systems.

e Such retrieval systems can be applied to histopathological images

Figure 3: Image retrieval (Zhang, et al., IEEE Trans. Med 2015)



Other Variants of the Retrieval Systems.

e Such Retrieval system can also be applied to morphological neuron
data-base
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Figure 4: Image retrieval (Zhongyu Li, IEEE Trans. Pattern Recogn. 2017).



Other Variants of the Retrieval Systems.

e The crux of such retrieval system is a hash function that computes a
binary code from the representations of the input
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Figure 5: Image retrieval (Zhongyu Li, IEEE Trans. Pattern Recogn. 2017).



What is hashi

e A hash function is a function takes a group of characters or numbers
(called a key) and maps it into a value of a certain length.

e Hash functions and their associated hash tables are used in data
storage and retrieval applications to access data in a small and
nearly constant time per retrieval.

e A collision or clash occurs when two distinct pieces of data have
the same hash value
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Figure 6: Hash function



What is the locally sensitive hashing (LSH)?

e A locally sensitive hash (LSH) function is an algorithmic technique
that hashes similar input items into the same “buckets” with high
probability.

e In a sense, we want a controlled collision in LSH.

e Mathematically,

Pren[h(x) = h(X)] = sim(x, X). (1)
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Figure 7: Locally Sensitive Hash function.



What is the use case of LSH?

e Given a query, we need to do a look up via nearest neighbor search.

e The complexity of k-NN using Euclidean distance is O(mdk), where
m is the size of data-base and d is the dimension of data-points.

Figure 8: Image Lookup via the Nearest Neighborhood.



Application of LSH to the treatment planning

e There are objectives of treatment planning:
1. Develop a plan that treats the tumor volume. This plan should give
as homogeneous a dose distribution as possible throughout the

clinical target volume.
2. Minimize radiation dose to healthy organs. Areas outside the target
volume should receive as little radiation as possible.

Figure 9: Volumetric Isodose distribution



Feature extraction (shallow architecture)

e We trained two convolutional auto-encoders to extract the features
from CT and Isodose contours since we don't have labeled data:
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Figure 10: The structure of convolutional autoencoder for CT and Isodose contour.
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Feature extraction (deep architecture)

e We recieved new data which enabled us to design a deeper

convolutional autoencoder:
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Figure 11: The structure of convolutional autoencoder for CT and Isodose contour.
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An example of LSH

e We the use a hash map to map the extracted features
h:RY— {0,1,2,--- ,g—1}.

e A possible hash map for g = 2 (Hamming code) is proposed by
Raginsky, et al. [NIPS 2009], where

1
ht.bw(x) & 3 [1+ sign(cos((w, x) + b) + 1), 2)
where
1. t ~ Uniform[—-1,1].
2. b ~ Uniofmr[—m, 7].
3. wn~ N(O7 Id><d)-

e A hash code of length n can be constructed by sampling these

random variables i.i.d., i.e., h"(x) = (he by ,wi(X), -, Bt by .00, (X)),
where ty, -+, t, ~ Uniform[—1,1], by, -, b, ~ Uniofmr[—m, 7],
and Wi, ,Wh N(O7 Id><d)-
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Relationship between Hamming distance and Euclidean distance

in LSH
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Figure 12: The scatter plots of normalized Hamming distance versus Euclidean
distance for the hash function, where the hash functions. Panel (b): 512 bits, Panel
(c): 4096 bits
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utput from a shallow convolutional auto-encoders

e Reconstruction of CT slices with the shallow convolutional
auto-encoders:
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Figure 13: Left:input, Right:output
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The input and reconstructions with the shallow convolutional

auto-encoders

e Reconstruction of Isodose curves with the shallow convolutional

Figure 14: Left:input, Right:output
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3D view of our reconstruction with the shallow convolutional

auto-encoders

Figure 15: Left:input, Right:output
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The input/output from a deep convolutional auto-encoders
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Figure 16: Left:input, Right:output
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The input/output from the deep convolutional auto-encoders

e Reconstruction of RT dose slices with the deep convolutional

Figure 17: Left:input, Right:output
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Retrieval Results for CT slices only-Shallow network
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Figure 18: Examples of Retrieval for CT slices without including their isodose
contours.
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Joint Retrieval Results for the CT and Isodose Contours-Shallow

network
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Figure 19: Examples of Retrieval for CT slices without including their isodose
contours.
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Retrieval Results for CT slices only-Deep network
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Figure 20: Examples of Retrieval for CT slices without including their isodose
contours.
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Retrieval Results for CT slices only-Deep network

Figure 21: Examples of Retrieval for CT slices without including their isodose
contours.
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Retrieval Results for CT slices only-Deep network

Figure 22: Examples of Retrieval for CT slices without including their isodose
contours.
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Retrieval Results for CT slices only-Deep network

Figure 23: Examples of Retrieval for CT slices without including their isodose
contours.
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Performance metrics

e The Precision-Recall and ROC curves cannot be measured for
unsupervised application.

e However, we observe that a hash function is the Hamming
embedding of the Euclidean vectors.

e An ideal hash function should compute a Hamming distance
comparable to the Euclidean distance between two input vectors.
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Performance metrics

e We define the Sgrensen—Dice score as follows

2|ZEuclidean N ZHammi
D(IEuclideanaIHamming) - %E L::I ea|n+ IHamml'ng|’
uclidean amming

where Zgclidean i the set of retrieved images based on the Euclidean
distance, and Zyash is the set of images based on the Hamming
distance.

e The Sgrensen—Dice score is closely related to the Jaccard index

) o |IEuc|idean N IHamming‘

j(IEuclideanaIHamming - |IE lid UZx i ‘7
uclidean amming

which is a statistic used in understanding the similarities between
sample sets.
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Violin plots for the number of bits
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Figure 24: The violin diagram of the Jaccard and Dice scores for 400 query images 21



Scores for different retrieved images
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Figure 25: The Jaccard and Dice scores of 100 query slices for different number of

retrieved images.
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Scores for different retrieved images
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Figure 26: The Jaccard and Dice scores of 100 query slices for different number of

retrieved images.
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Conclusion

e We developed a locally sensitive hashing for the CT image retrieval
with the application to the treatment planning.

e Our LSH is based on a kernel function that maps the extracted
feature vectors into a binary (Hamming) code.

e Currently, we intend to improve our hashing method by employing
recent kernel training techniques that we have developed in our
previous papers.
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