Supine Breast MRI with 60-channel Breast Coil

Jessica A McKay-Nault, Ph.D.

Stanford Cancer Imaging Training (SCIT) Seminar / RSL Weekly Seminar

Mentored by Drs. Brian Hargreaves and Bruce Daniel

October 6th, 2021

Breast DWI & ADC

Post-contrast T₁-weighted

Clinical applications of DWI for breast cancer

- **Treatment monitoring**: Increasing ADC values indicate treatment response earlier than conventional measurements
- **Diagnosis and staging**: Increase specificity and reduce unnecessary biopsies??
- Screening: detection without contrast

Prone vs Supine Breast Imaging

- Breast MRI is typically acquired prone because of respiratory motion
- However...
 - Supine imaging has better correlation to surgery and other imaging modalities
 - Prone imaging is uncomfortable and awkward
 - Prone coils reduce the effective bore size
- Most supine MRI requires breath holds for high quality images
 - Therefore we need really really fast imaging!

Challenges

EPI is prone to *Distortion* Especially in breast where ΔB_0 can be large.

Challenges

 $b = 0 \text{ s/mm}^2$, 1 NEX

 $b = 800 \text{ s/mm}^2, 4 \text{ NEX}$

MUSE, 2-shot, Air coil with R = 5, Breath hold: 24 second 30 slices, 1.1 mm x 1.4 mm x 5 mm

DWI is SNR starved!

Especially at high b-values

$$S(b) = S_0 e^{-b * ADC}$$

Motivation for a new coil

The standard breast coil

Problems:

• Only prone imaging

An option for supine imaging

Problems:

- Low channel count in breast region
- Axilla coverage?

60-channel breast coil

High SNR:

- Follows body contour, especially for larger breast size, for close proximity to breast
- High channel count

60-Channel Supine Breast Coil

Features:

- 60 elements (30 per half), 7-cm loops
- Heavily overlapped
- Coverage of chest wall and axilla
- Contoured design, up to 40DD
- Can accelerate up to 6x
- Positioning: Supine or Prone (with support)
- Separable halves

Jana Vincent

Fraser Robb

Back

Front

Preliminary
ResultsCompare 60-channel breast prototype
coil with 30-channel air coil

17

Methods

Comprehensive Quantification of Signal-to-Noise Ratio and *g*-Factor for Image-Based and *k*-Space-Based Parallel Imaging

Deconstructions

SNR

• Units??

SNR maps

Air coil

60-channel breast coil

DISCO Pre-Contrast

1.2 mm x 1.2 mm x 1 mm, Acceleration: 4 x 3, 17 sec breath hold

Air coil

60-channel breast coil

Goal: High spatial and temporal resolution to characterize the contrast uptake of the tumor.

Single Shot DWI

Air coil

60-channel breast coil

b = 50

Discussion

- Challenges:
 - Difficult to compare SNR and g-factor maps with the standard breast coil (prone)
 - Would like to compare with InkSpace 24-channel pediatric coil
 - Not included here because it can only be used at 3T3
 - How to compare coils not scanners?
 - ESPIRiT very sensitive to threshold in phantom case
 - Size of the data!!

Future Work

- Assess in the context of DWI
 - Breath hold or respiratory gated
 - High PI / N_{shots} to reduce distortion
- Push PI of DISCO protocol and explore spatial/temporal resolution tradeoff for characterizing breast cancer
- Possibly assess the coil in prone position
- Compare the coils in patients

Thank you!

