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Diffuse Large B Cell Lymphoma

Nasr M.R (2019) Lymph Node Pathology For Clinicians Cham, Switzerland:  Springer Nature Switzerland AG
Ovalle WK (2013) Netter’s Essential  Histology Philadelphia, Pennsylvania:  Saunders



Demographics 

NIH National Cancer Institute (2019) Cancer Stats Facts: NHL- Diffuse Large B Cell Lymphoma (DLBCL) Retrieved from https://seer.cancer.gov/statfacts/html/dlbcl.html



Survival Statistics

NIH National Cancer Institute (2019) Cancer Stats Facts: NHL- Diffuse Large B Cell Lymphoma (DLBCL) Retrieved from https://seer.cancer.gov/statfacts/html/dlbcl.html



Positron Emission Tomography

Masdeu J.C.  (2016) Handbook of Clinical Neurology , Neuroimaging, Part I  Amsterdam, Netherlands :  Elsevier B.V. 



Radiomics 

1. Giles RJ et al (2016)  Radiomics: Images Are More Than Pictures, They Are Data Radiology 278 (2): 563-577 



Radiomics Workflow

2. Lambin P et al (2017) Radiomics: the bridge between medical imaging and personalized medicine 
Nature Reviews: Clinical Oncology 14: 750-762



Our Radiomic Workflow
Component of Workflow Study Component Justification

Prediction Target 2 yr Progression Free Survival 
OR 

Relapse

• Good predictor of 5 year overall 
survival3

Time Point Pretreatment PET Scan • Guidance of Treatment

Volume of Interest Largest Lymphomatous Deposit 
(Qualitative Assessment)

• Most difficult lesions to resolve 
with treatment

Segmentation Semi-Automatic
PET Edge (MIM Software)4

• Minimizes effect of inter-reader 
variability 

Feature Extraction Pyradiomics5 via 
Quantitative Imaging Feature 

Pipeline (QIFP)6

• Image Biomarker Standardization 
Initiative (IBIS) compliant 



Implementation of Workflow

6. Mattonen SA et al (2020)  Quantitative Imaging Feature Pipeline (QIFP): A web-based tool for utilizing, sharing, and 
building image processing pipelines Journal of Medical Imaging 7(4):042803



Results: Only Pyradiomics
Features



Pyradiomics + Clinical Features+ 
Conventional Quantitative PET Metrics

Demographics: Age, Sex, Ann Arbor Stage of Disease
Risk Factors: Presence of Autoimmune Condition, Previous Cancer Diagnosis, Transformed DLBCL
Treatment: Cycles Completed, Administered Dosage, Adjunct Therapy
Conventional PET Metrics: Standard Uptake Value (SUV) metrics, Volume, Tumor Lesion Glycolysis 



Conclusion/Future Directions
§ Intensity and Texture Features can potentially be used to predict 

clinical outcomes in DLBCL
§ Introduced a clinical friendly approach to radiomics
§ Findings have to be validated with other imaging datasets 
§ Incorporation of pathological features 
§ Compare Radiomics Approach Versus Deep Learning Approach
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