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Diffuse Large B Cell Lymphoma

'V Lymph nodes and lymphatic

drainage of mouth and pharynx. Pathology

Involved lymph nodes or tissues show partial or complete effacement of architec-
ture by diffuse infiltration of medium- to large-sized lymphoid cells (Fig. 5.20).

A LM of a lymph node. Surrounded by a capsule (Ca), it has an outer cortex {Co) and
central medulla (Me). The hilum is not in the plane of section. The rectangle indicates the area
seen at higher magnification in Fig. 9.5. 7x. H&E.

¥V Three-dimensional schematic of a lymph node.
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Demographics

Number of New Cases per 100,000 Persons by Race/Ethnicity & Sex: Diffuse Large B-Cell

Lymphoma (DLBCL)
5-Year Relative Survival by Sex, Age, and Race
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Diffuse large B-cell lymphoma is

most frequently diagnosed among, 5-Year Relative Survival By Sex. Age. and Race
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Survival Statistics

Percent of Cases & 5-Year Relative Survival by Stage at Diagnosis: Diffuse Large B-Cell

Number of New Cases and Deaths per 100,000: The number of new Lymphoma
cases of diffuse large B-cell lymphoma was 5.6 per 100,000 men and

women per year. The number of deaths was 1.8 per 100,000 men and

women per year. These rates are age-adjusted and based on 2012-

2016 cases and deaths.

Percent of Cases by Stage
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How Many People Survive 5 Years Or More after Being Diagnosed with Diffuse
Large B-Cell Lymphoma?

Stage IV (23%)
Diffuse or Disseminated Involvement

Unknown (5%)
Unstaged

Relative survival statistics compare the survival of patients diagnosed with cancer with the survival of people in the
general population who are the same age, race, and sex and who have not been diagnosed with cancer. Because survival
statistics are based on large groups of people, they cannot be used to predict exactly what will happen to an individual
patient. No two patients are entirely alike, and treatment and responses to treatment can vary greatly.
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Based on data from SEER 18 2009-2015. Gray figures represent those who have died from diffuse large B-cell lymphoma.
Green figures represent those who have survived 5 years or more. SEER 18 2009-2015, All Races, Both Sexes by Ann Arbor Stage
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Positron Emission Tomography
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Fig. 11.3. The chemical structure of '*F-fluorodeoxyglucose
(FDG) (left) is very similar to glucose (right); in FDG the 2’
hydroxyl group has been replaced by "F.

Y (511 keV) N ¥ (511keV)

Fig. 1L.1. After being emitted, positrons travel a distance GE Discovery 600/690
before combining with an electron in an annihilation event.
This results in the production of two antiparallel 511 keV pho-
tons which strike opposing detectors within a coincidence time
window.

Masdeu J.C. (2016) Handbook of Clinical Neurology , Neuroimaging, Part | Amsterdam, Netherlands : Elsevier B.V.




Radiomics

|. Image patients II. Identify ROI 11l. Render in 3D IV. Extract Features IV. Data Integration
Data Mining
Model Building
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Figure 1:  Flowchart shows the process of radiomics and the use of radiomics in decision support. Patient work-up requires information from disparate sources to
be combined into a coherent model to describe where the lesion is, what it is, and what it is doing. Radiomics begins with acquisition of high-quality images. From
these images, a region of interest (ROJ) that contains either the whole tumor or subregions (ie, habitats) within the tumor can be identified. These are segmented with
operator edits and are eventually rendered in three dimensions (30). Quantitative features are extracted from these rendered volumes to generate a report, which is
placed in a database along with other data, such as clinical and genomic data. These data are then mined to develop diagnostic, predictive, or prognostic models for
outcomes of interest.

1. GilesRJ et al (2016) Radiomics: Images Are More Than Pictures, They Are Data Radiology 278 (2): 563-577
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Radiomics Workflow
Radiomics
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Figure 1| Flowchart depicting the workflow of radiomics and the application of the RQS. The workflow includes the
necessary steps in aradiomic analysis. The RQS both rewards and penalizes the methodology and analyses of a study,
consequently encouraging the best scientific practice. RSQ, radiomics quality score; VOI, volume of interest.

2. Lambin P et al (2017) Radiomics: the bridge between medical imaging and personalized medicine
Nature Reviews: Clinical Oncology 14: 750-762
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Our Radiomic Workflow

Component of Workflow Study Component

Prediction Target 2 yr Progression Free Survival * Good predictor of 5 year overall
OR survival®
Relapse

Time Point Pretreatment PET Scan * Guidance of Treatment

Volume of Interest Largest Lymphomatous Deposit ¢ Most difficult lesions to resolve
(Qualitative Assessment) with treatment

Segmentation Semi-Automatic * Minimizes effect of inter-reader
PET Edge (MIM Software)* variability

Feature Extraction Pyradiomics® via * Image Biomarker Standardization

Quantitative Imaging Feature Initiative (IBIS) compliant

Pipeline (QIFP)®



Implementation of Workflow

Patient Population -85 Patients Qualified (out of 1500+)
-59/85: Achieved 2 year Progression Free Survival
-26/85: Relapsed within 2 years after treatment

Scanners Used -GE Discovery Series: 600, 690, 710, Ml
Reconstruction  -Ordered Subset Expectation Maximization (OSEM)
Algorithms -Q.Clear (Bayesian Based Reconstruction Method)
. User-
User- Machine .
Feature . . supplied
Engine supplied Learning Ma‘::Ft)wine ‘ Types of Radiomic Features
Features ) Engine Learning |/ Extracted

@ # # %V Morphology

Communications Bus/Scheduler \ Texture
t t ‘ t Size
Configuration - i
& DICOM comeal Rests Intensity
Initialization DB DB DB
Files Feature Engine

Results
Quantitative Imaging Feature Pipeline

6. Mattonen SA et al (2020) Quantitative Imaging Feature Pipeline (QIFP): A web-based tool for utilizing, sharing, and P Stanford
building image processing pipelines Journal of Medical Imaging 7(4):042803 MEDICINE



RESUILS: UNly Fyraalomics
Features
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Pyradiomics + Clinical Features+
Conventional Quantitative PET Metrics

Demographics: Age, Sex, Ann Arbor Stage of Disease

Risk Factors: Presence of Autoimmune Condition, Previous Cancer Diagnosis, Transformed DLBCL
Treatment: Cycles Completed, Administered Dosage, Adjunct Therapy

Conventional PET Metrics: Standard Uptake Value (SUV) metrics, Volume, Tumor Lesion Glycolysis
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Conclusion/Future Directions

" |ntensity and Texture Features can potentially be used to predict
clinical outcomes in DLBCL

= |ntroduced a clinical friendly approach to radiomics

= Findings have to be validated with other imaging datasets

= |ncorporation of pathological features

= Compare Radiomics Approach Versus Deep Learning Approach
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