

# Automatic Segmentation of Intradural Spinal Tumors in Post-Contrast T1-Weighted MRI Scans

Golnaz Moallem, Ph.D.
Postdoc Research Fellow, PIMed Lab
Department of Radiology, Stanford School of Medicine

#### **Outlines**

#### Introduction

What are intradural spinal tumors?

#### **Data**

#### Methods

- Preprocessing
- 3D U-net segmentation model
- Model Details and data statistics

#### Results

#### **Challenges and Next Steps**



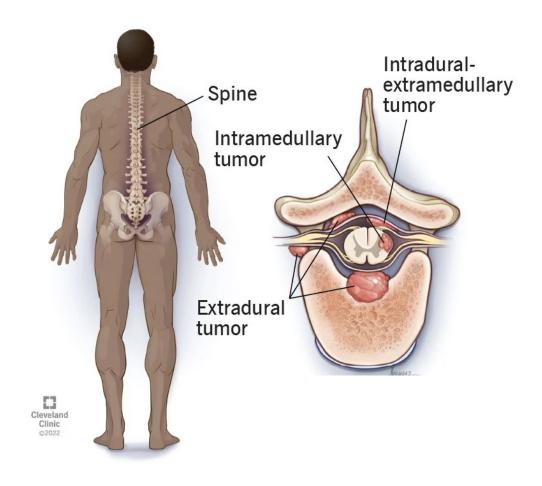
Introduction:
What are
Intradural
Spinal Tumors?



## **Spinal Tumors**

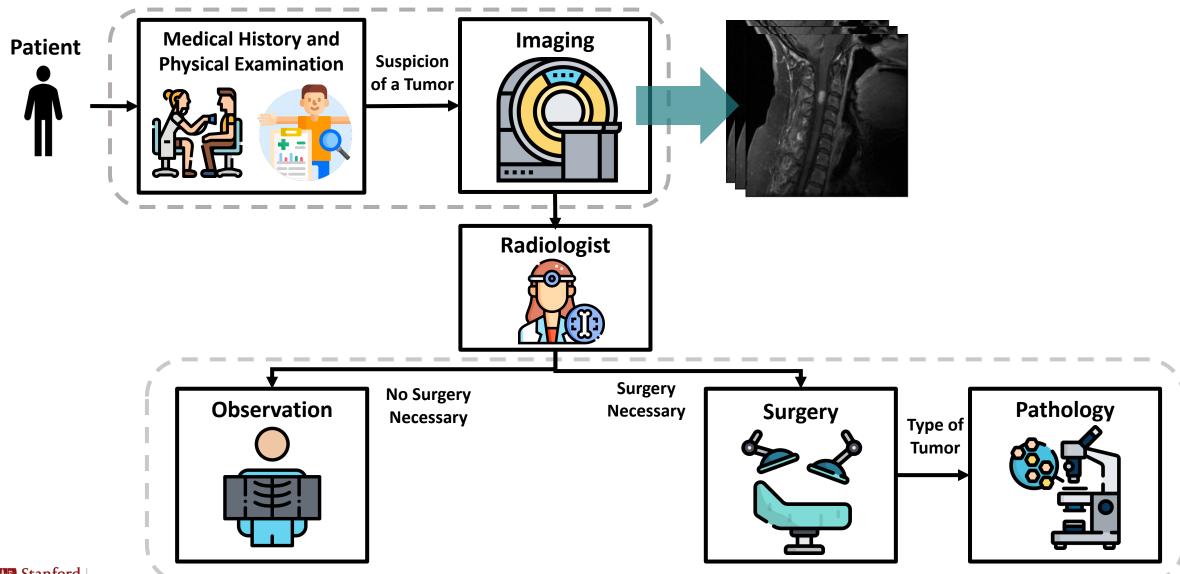
- Large heterogenous group of abnormal mass of tissue affecting the spinal cord
- Developed within or near the spinal cord
  - Intradural: growth within the dura of the spinal cord
    - Intramedullary
    - Extramedullary
  - Extradural: mass within the spinal column
- Primary or secondary
- Malignant or Benign
- Ramifications: pain, neurological damage, loss of mobility, etc.

#### **Spinal tumors**

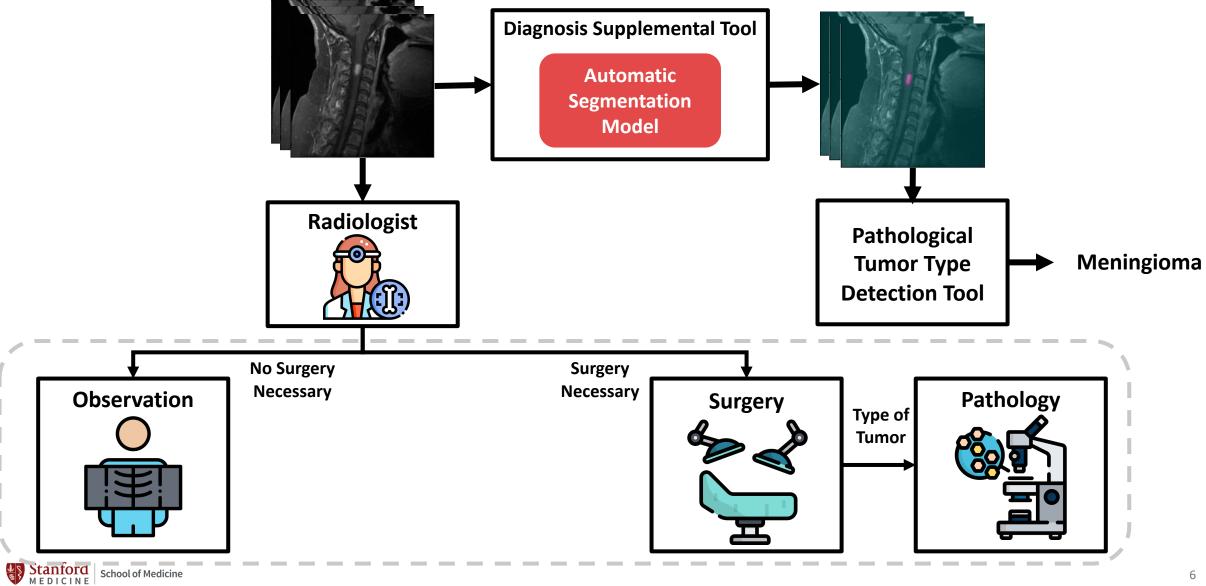




## **Intradural Spinal Tumor Treatment Workflow**



## **Intradural Spinal Tumor Treatment Workflow**



# **Automatic Segmentation Model**

Stanford | School of Medicine

**Post-Contrast T1-Weighted Spinal MRI Scan Segmented Tumor Tumor Detection Supplemental Tool Automatic** Segmentation Model

# Data



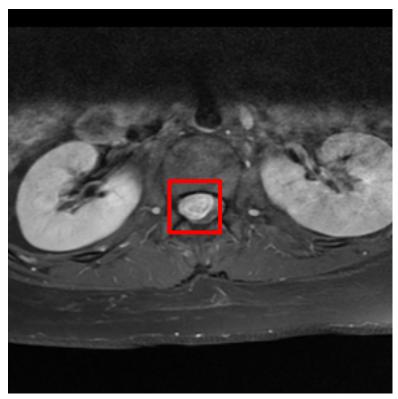
#### Data

- 58 intradural spinal tumor cases from the Stanford University hospital database
  - Surgical cases; pathology images available
  - Post-contrast T1-weighted MRI scans
  - Multiple manufacturers

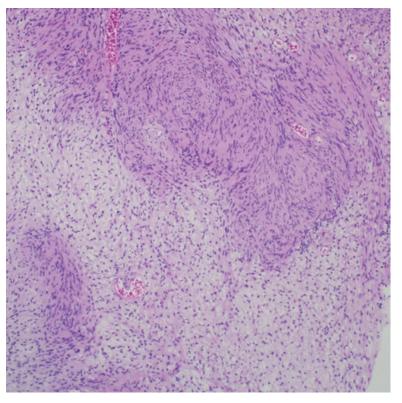
**Sagittal View** 



**Axial View** 



**Pathology Slide** 



Pathology slide from: https://pubs.rsna.org/doi/full/10.1148/rg.2019180200

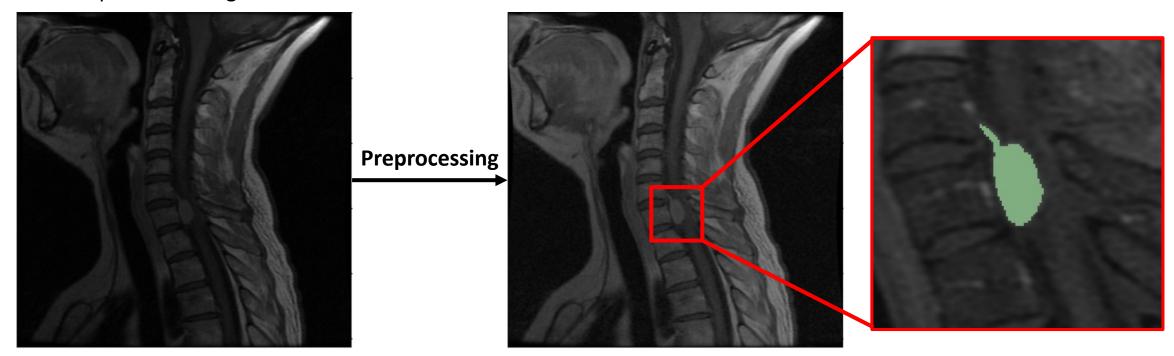
# Methods



## **Methods: Preprocessing**

#### **Preprocessing steps using MONAI Library:**

- 1. Adjust contrast by gamma correction  $(x = (\frac{x min}{max min})^{gamma} * (max min) + min)$
- 2. Bias field correction [1]
- 3. Scale intensity values  $(x = \frac{x min}{max min})$
- 4. Resize
- 5. Spatial Padding

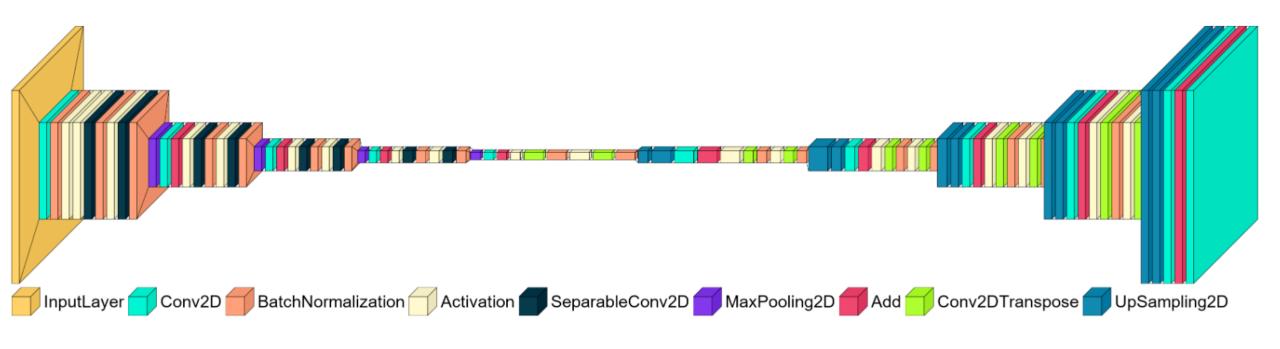




[1]: Van Leemput, Koen, et al. "Automated model-based tissue classification of MR images of the brain." *IEEE transactions on medical imaging* 18.10 (1999): 897-908.

#### **Methods: U-Net Model**

#### **3D U-Net Segmentation Model:**





#### **Methods: Model Details and Data Statistics**

| Dataset | Training set | Testing set |
|---------|--------------|-------------|
| Count   | 43 (74%)     | 15(26%)     |

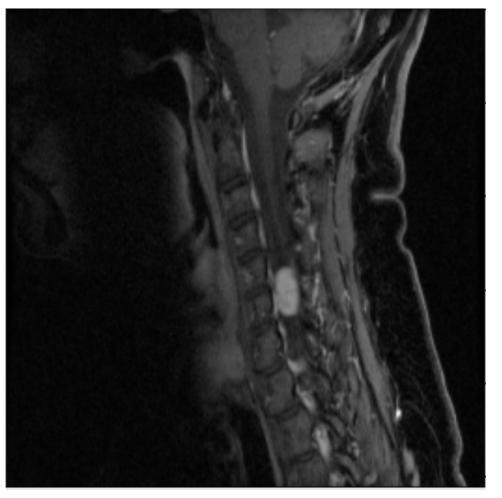
| Parameters                  |                            | Values                 |  |
|-----------------------------|----------------------------|------------------------|--|
| U-Net Model                 | Sequence of channels       | (16, 32, 64, 128, 256) |  |
|                             | Kernel and up-kernel sizes | 3×3×3                  |  |
|                             | Strides                    | (2, 2, 2, 2)           |  |
| Training<br>Hyperparameters | Loss function              | DiceLoss               |  |
|                             | No. of epochs              | 400                    |  |



# Results







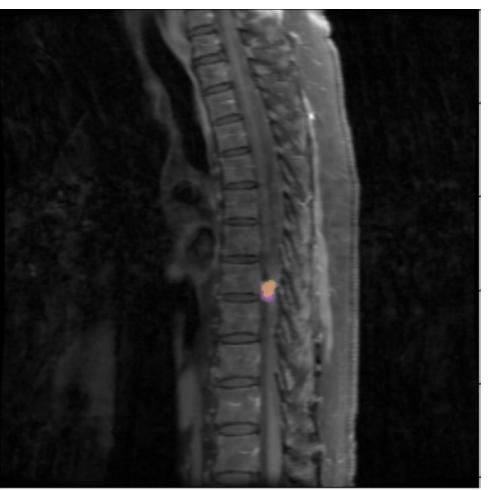




**DICE = 0.9** 



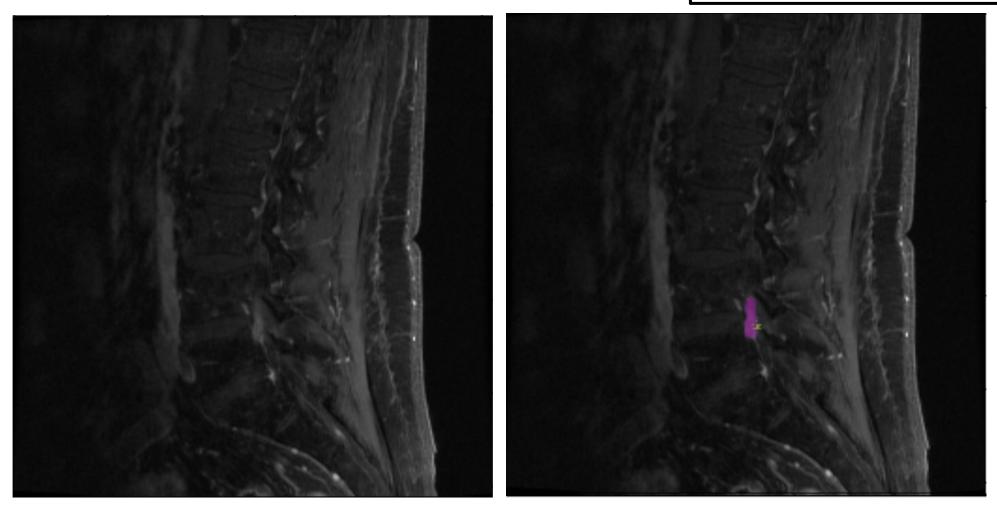






**DICE = 0.64** 















**DICE = 0.74** 

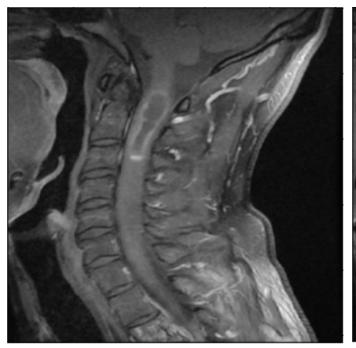
# **Preliminary Results**

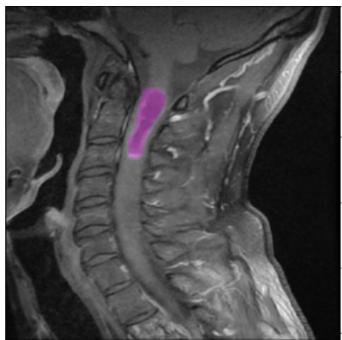
| K-Fold Cross Validation (K = 4) |              |                              |                   |                            |  |
|---------------------------------|--------------|------------------------------|-------------------|----------------------------|--|
| Fold                            | No. of Cases | Patient-level<br>Sensitivity | Overall Mean DICE | True Positive<br>Mean DICE |  |
| Fold 1                          | 15 cases     | 11 out of 15 (73%)           | 0.35 ± 0.27       | 0.47 ± 0.21                |  |
| Fold 2                          | 15 cases     | 12 out of 15 (80%)           | 0.42 ± 0.3        | $0.52 \pm 0.24$            |  |
| Fold 3                          | 15 cases     | 8 out of 15 (53%)            | 0.18 ± 0.24       | $0.33 \pm 0.2$             |  |
| Fold 4                          | 13 cases     | 8 out of 13 (62%)            | $0.36 \pm 0.33$   | $0.58 \pm 0.23$            |  |
| Ave                             | erage        | 66.5%                        | 0.33 ± 0.27       | 0.48 ± 0.22                |  |

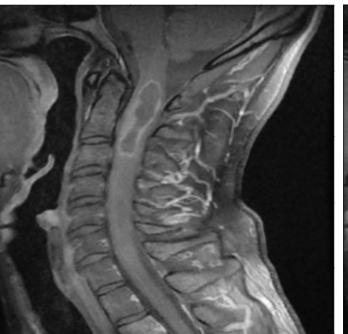


# **Challenging Cases**

- Heterogenous appearance (enhancing rim, necrosis inside)
- This type of tumor may not be represented in the training set









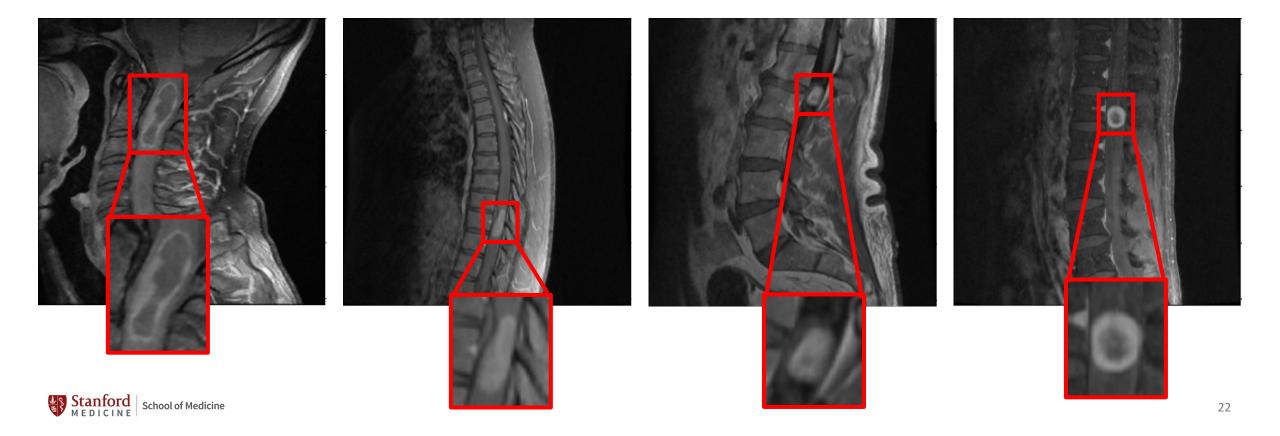


# Challenges and Next Steps



# **Challenges**

- Limited annotated data
- Heterogenous tumor shapes and types
- Variation in the field of view



## **Next Steps**

- Expand the training set
- Improve the preprocessing step
- Incorporate axial view of MRI Scan in training the model
- Try other segmentation approaches
- Develop a deep learning model for sub-type classification of the tumors



#### **Conclusion**

- An Al-powered intradural spinal tumor diagnosis tool presented to assist the radiologist/surgeon in identifying these tumors in MRI scans
- For this purpose, an automated segmentation model proposed for segmenting intradural spinal tumors in post-contrast T1-weighted MRI scans
- Preliminary results for this segmentation model demonstrated on a cohort of surgical intradural tumor cases



# Thank You!



Mirabela Rusu, PhD
Assistant Professor Of Radiology and, By
Courtesy, Of Urology



Atman Desai, MD
Spine Neurosurgeon
Clinical Associate Professor, Neurosurgery



Hammad Ghanchi, DO Clinical Instructor, Neurosurgery



